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Abstract

This paper presents a model of the business cycle that highlights the importance of

endogenous firm entry. In our framework, short-term supply shifts driven by new firm

entries become a crucial factor in driving the economy’s response to shocks, regardless

of whether those shocks originate from the ’supply’ or ’demand’ blocks. Specifically,

an uptick in aggregate demand triggers a cycle of increased firm entry, thereby enhanc-

ing aggregate supply and, in turn, further boosting demand through greater equipment

purchases by new entrants. Monetary policy becomes especially powerful in this con-

text, as it simultaneously impacts aggregate demand and the entry decisions of firms.

This effect is particularly noticeable in economies with a significant potential for new

firm entries. Our analytical approach characterizes the equilibrium of firm entry as a

function of the ‘policy room’, a sufficient statistic related to monetary policy, which

turns out to be positively correlated with the effectiveness of monetary and fiscal pol-

icy interventions both in the model and the data.
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1 Introduction

Contemporary macroeconomic models frequently classify individual shocks into separate
‘demand’ and ‘supply’ blocks.1 However, distinguishing between them proves challenging
in practice, as shocks often appear to intermingle and co-occur, as observed during the
recent Covid-19 crisis. In this paper, we operationalize the concept of demand and supply
separability (or lack thereof) in a precise manner, employing modern macroeconomic tools
within a New Keynesian framework, and study the supply-side effect of monetary policy
via endogenous firm entry and exit.

Figure 1 illustrates our basic problem via the classic aggregate demand (AD) and ag-
gregate supply (AS) diagram. In the context of endogenous firm entry, a positive demand
shock (AD0 to AD1) encourages additional supply via firm entry, as firms find it more
profitable to enter the market. It shifts the aggregate supply curve from AS0 to AS1. As
new entrants need to purchase necessary equipment for operating in the market, this shift
in supply further amplifies aggregate demand (AD1 to AD2), initiating a self-reinforcing
cycle between the two. Thus, firm entry generates the following three features: (i) a higher
participation rate of firms mitigate the inflationary pressure and raise the output; (ii) de-
mand and supply can be generally intertwined rather than separate entities, and shocks
traditionally attributed to distinct demand-supply blocks have the potential to induce ob-
servationally similar co-movements in output and price; (iii) finally, the potency of mone-
tary policy transmission on output will be stronger if endogenous responses in firm entry,
thereby shifts in aggregate supply, are bigger.

In this context, the absence of demand-supply separability stems from the simultaneous
co-movement of supply and demand, attributed to endogenous firm entry. This differs from
the conventional equilibrium, which implies movement along the aggregate supply curve,
rather than a shift of the curve itself when the economy faces demand shocks. To illustrate
the importance of endogenous firm entry in explaining the business cycle, we offer a de-
tailed analytical breakdown of labor adjustments in response to economic shocks, focusing
on two key aspects: the extensive margin, which involves hiring by new entrants, and the
intensive margin, which involves hiring by existing firms. Our analysis demonstrates that
adjustments on the extensive margin are quantitatively significant in driving the economy’s

1In a traditional macroeconomic framework, positive supply shocks (such as technology advancements
or decreased cost-push factors) expand the supply curve and lead to lower equilibrium prices and increased
production (as captured by the New Keynesian Phillips curve), while demand shocks generate a positive
correlation between prices and production.
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responses to various economic shocks.

Figure 1: Convoluted aggregate demand and supply with endogenous firm entry

To facilitate the analysis, we decouple endogenous firm entry from other elements of the
standard New Keynesian model by separating the production process across downstream
and upstream industries. At the downstream level, a fixed measure of identical but differen-
tiated firms engage in the production of a continuum of consumption varieties, face nominal
pricing rigidities, and rely on upstream industry inputs. Upstream firms, conversely, enjoy
price flexibility and employ labor, feature heterogeneous productivity endowments, and are
obligated to incur stochastic fixed costs to enter the market and remain operational in subse-
quent periods. To further simplify the problem and obtain intuitive analytical expressions,
we follow the literature on endogenous entry and assume that productivity and entry costs
are drawn from independent Pareto distributions.2 Finally, we impose a cash-in-advance
constraint that, coupled with entry costs, generates upstream industry’s reliance on borrow-
ing from capital markets, connecting entry decisions to monetary policy via loan rates.3

Therefore, monetary accommodation has dual roles: it raises aggregate demand as well as

2For the use of Pareto distributions for tractablity purposes, see e.g., Melitz (2003).
3Therefore, given a fixed cost level, a lower policy rate raises the likelihood that a firm operates in the

market in the subsequent period.
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encourages additional firm entries by reducing the loan rates faced by firms, triggering a
self-reinforcing cycle between demand and supply.

Our model yields several interesting analytical outcomes, one of which is the formula-
tion of a minimum policy rate, termed the “Satiation Bound (SB)”, which is defined as the
threshold rate that ensures full market participation of firms with comparable fixed costs.
When the policy rate falls below SB, firms with even the lowest productivity will find mar-
ket entry profitable. As a result,4 market entry becomes less responsive to further monetary
policy easing and other expansionary economic shocks. In such scenarios, the horizontal
shift of the aggregate supply (AS) curve depicted in Figure 1 gradually diminishes as the
policy rate falls. Consequently, the effectiveness of monetary policy in stimulating produc-
tion diminishes, leading to reduced output multipliers and more pronounced inflationary
responses, among others.

This observation suggests that the gap between the current policy rate and the average
Satiation Bound (SB), which we refer to as the “policy room”, acts as a sufficient statistic

for gauging the supply-side impact of monetary policy. In fact, our model generates signif-
icant correlation between our “policy room” measure and the potency of monetary policy,
as well as general responses to other shocks.

We then test the key model implication that the potency of monetary policy is strength-
ened as our “policy room” measure is higher. By presenting novel ways to recover the pol-
icy room, which is unobservable, we find that a higher (retrieved) policy room significantly
increases the potency of monetary policy shocks: for example, one standard deviation in-
crease (2 percentage points) in log-policy room raises a magnitude of output decrease (in
%) in response to a one standard deviation tightening shock by around 3 percentage points,
thus confirming our mechanism in the data.

Related literature Our business cycle setting with endogenous (upstream) firm entry fol-
lows previous works in the literature, e.g., Bilbiie et al. (2007), Bergin and Corsetti (2008),5

Stebunovs (2008), Kobayashi (2011) Bilbiie et al. (2012), Uusküla (2016), Hamano and
Zanetti (2017). While some papers assume equity financing for newly entering firms, e.g.,

4As firms with the lowest productivity have already entered the market, additional easing of monetary
policy does not trigger a new wave of firm entry.

5Our assumption that fixed costs for market entry are paid in units of the final consumption goods aligns
with the framework proposed by Bergin and Corsetti (2008). However, we deviate from their assumption of
“pre-set” output procurement prices in favor of market prices.
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Bilbiie et al. (2007), Bergin and Corsetti (2008), Bilbiie et al. (2012),6 new firms finance
their entry costs via borrowing from a loan market in our model, as in Stebunovs (2008),
Kobayashi (2011), Uusküla (2016), so that firm entry is boosted under monetary accom-
modation, which aligns with the evidence presented in Colciago and Silvestrini (2022).7 In
addition, we express the equilibrium firm entry as a sole function of the “policy room”, a
sufficient statistic we devise. Up to our knowledge, we are one of the first works that devise
the sufficient statistic that accounts for the supply effect of demand shocks and empirically
test the channel.8

Our characterization of the Satiation Bound (SB) hinges on the idea that (i) monetary
expansion facilitates an upswing in firm entry, and (ii) upon the monetary policy rate reach-
ing a specified lower bound, all potential firms associated with a particular fixed entry cost
have ventured into the market. Beyond this juncture, the positive supply effects stemming
from further monetary accommodation and subsequent firm entry begin to wane. This phe-
nomenon resonates with the insights of Ulate (2021) and Abadi et al. (2022), who incor-
porate analogous concepts in the context of banking profitability and the negative interest
rates.

Layout Section 2 presents our New Keynesian model with endogenous firm entry. Sec-
tion 3 discusses our calibration, steady-state analysis, and comparative statics. The model
economy’s impulse response functions to various shocks are explored in Section 4. Section
5 provides our empirical analysis and confirms the model predictions in the data. Conclud-
ing remarks are presented in Section 6.

Derivations and proofs are detailed in Appendix A. Appendix B summarizes the equi-
librium conditions, inclusive of the flexible-price and steady-state benchmarks. Appendix
C provides estimation techniques of the unobservable policy room and the satiation mea-
sure based on available data. For supplementary tables and figures, readers are directed to

6Under the equity financing for new entrants, an expansionary monetary shock leads to an increase in the
aggregate demand for products, raising labor demand and wages. Higher labor costs for potential entrants
can lower their net present value and reduce the entry rate of new firms, which is counterfactual. For the role
of “real wage rigidity” in resolving this problem, see e.g., Lewis and Poilly (2012).

7Colciago and Silvestrini (2022) find the empirical evidence that expansionary monetary policy leads to
an initial decrease and then an overshooting in the average productivity of the economy, as well as an initial
increase and then undershooting in the firm’s entry rate.

8Bergin and Corsetti (2008) similary find that monetary policy has a significant impact on the creation
of new firms. Jordà et al. (2024) find long-run effects of monetary policy, through supply channels including
capital stocks and the total factor productivity (TFP), while we focus on short-run supply effects of monetary
policy.
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Appendix D. Appendix E presents various robustness checks to our empirical analysis, and
lastly, Appendix F provides the derivation of the model under a simplified framework with
homogeneous entry costs.

2 Model

2.1 Representative Household

The representative household maximizes lifetime utility given by

maxEt

∞∑
j=0

βj

[
ϕc,t · log (Ct)−

(
η

η + 1

)
·N( η+1

η )
t

]
,

where Ct is consumption, Nt is labor, and ϕc,t ≡ exp (uc,t) is an aggregate demand shock
defined as uc,t = ρc · uc,t−1 + εc,t, εc,t ∼ N (0, σ2

c ). The household’s budget constraint is

Ct +
Dt

Pt

+
Bt

Pt

=
RD

t−1Dt−1

Pt

+
RB

t−1Bt−1

Pt

+
WtNt

Pt

+
Υt

Pt

,

where Dt represents bank deposits, and Bt denotes government bonds, which are in zero
net supply in equilibrium. The corresponding gross interest rates for these assets are repre-
sented by RD

t and RB
t , respectively.9 Υt captures lump-sum transfers to households. Such

transfers may originate from various sources, including fiscal policies (such as subsidies to
firms) or residual firm profits.

The first-order conditions bring the following standard intertemporal and intratemporal
equations: The first-order conditions of this problem are

1

RD
t

=
1

RB
t

= βEt

[
ϕc,t+1

ϕc,t

· Ct

Ct+1Πt+1

]
, (1)

N
1
η

t = ϕc,t · C−1
t · Wt

Pt

. (2)

The household is indifferent between investing in bonds or deposits in equilibrium, and
central bank policy via RB

t has a one-to-one pass-through on RD
t .

9We do not consider issues pertaining to the zero lower bound (ZLB) in this paper, so it is possible for
interest rates to be negative, RD

t < 1.
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2.2 Firms

The model stratifies firms into two discrete categories: those belonging to the downstream
industry and those in the upstream industry. In both layers, firms operate in an environ-
ment of monopolistic competition. Notably, only downstream firms encounter nominal
price rigidities à la Calvo (1983). Operational dynamics are structured such that upstream
firms employ labor to generate intermediate input varieties, whose aggregator the down-
stream firms subsequently incorporate into the production of consumption good varieties.
Representative households own firms across both industries, and consume the aggregated
downstream goods.

One of the defining elements of our framework is the decision-making process for up-
stream firms. At each period, firms evaluate whether to continue/start operations in the next
period. Should they decide to remain/enter the market, they must incur certain fixed costs,
denominated in final goods, which are financed through loans from the banking sector.10

2.2.1 Downstream Industry: Aggregator

A representative firm, operating under perfect competition, aggregates the differentiated
products produced by a continuum of downstream firms, denoted by u, spanning the inter-
val [0, 1]. This can be formally expressed as:

Yt =

[∫ 1

0

Yt(u)
γ−1
γ du

] γ
γ−1

.

The demand for each distinct variety produced by downstream firms, as well as the aggre-
gate price, are given by

Yt(u) =

(
Pt(u)

Pt

)−γ

Yt , (3)

Pt =

[∫ 1

0

Pt(u)
1−γ du

] 1
1−γ

,

where Yt(u) and Pt(u) are the output and prices of downstream varieties, respectively. Let
Xt = PtYt represent the nominal aggregate expenditure, and Xt(u) = Pt(u)Yt(u) denote
the expenditure for a specific downstream variety u. Given these definitions, the individual

10This dependency on external funding effectively functions as a cash-in-advance production constraint.
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demands can be reformulated as:

Xt(u) = Γt · Pt(u)
1−γ , where: Γt = XtP

γ−1
t .

2.2.2 Downstream Industry: Monopolistic Competition with Sticky Prices

Consider a firm u within the downstream industry, belonging to the interval [0, 1]. This
firm employs Jt(u) units of the aggregate product from the upstream industry and produces
Yt(u) = Jt(u), indicating a one-to-one transformation from input to output. Consequently,
the aggregate sum of upstream products, denoted as Jt, satisfies: Jt ≡

∫ 1

0
Jt(u) du =∫ 1

0
Yt(u) du.
The profit equation for a downstream firm u is given by

Πt(u) = (1 + ζT )Pt(u)Yt(u)− P J
t Jt(u) ,

where P J
t represents the price of the aggregate upstream product, and ζT stands for a pro-

duction subsidy to downstream firms. Thus, the present discounted value of profits, which
the downstream firm u seeks to maximize, can be expressed as:

∞∑
l=0

Et

{
Qt,t+l

[
(1 + ζT )Pt+l(u)Yt+l(u)− P J

t+lJt+l(u)
]}

,

with Qt,t+l being the stochastic discount factor between time t and t+ l.
Firms in the downstream industry face price stickiness à la Calvo (1983), characterized

by a price-resetting probability of 1− θ. A firm, when adjusting its price P ∗
t , aims to:

max
P ∗
t

∞∑
l=0

Et

{
Qt,t+lθ

l
[
(1 + ζT )P ∗

t − P J
t+l

]( P ∗
t

Pt+l

)−γ

Yt+l

}
,

where all firms that adjust their prices select P ∗
t as the revised price. The resulting first-

order condition can be articulated as:

P ∗
t

Pt

=

∑∞
l=0Et

{
Qt,t+lθ

l

(
(1 + ζT )−1γ

γ − 1

)(
Pt+l

Pt

)γ+1(P J
t+l

Pt+l

)
Yt+l

}
∑∞

l=0Et

{
Qt,t+lθl

(
Pt+l

Pt

)γ

Yt+l

} . (4)
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2.2.3 Upstream Industry: Aggregator

There exists a continuum of upstream firms spanning the interval [0, 1], each producing a
distinct variety. These firms exhibit heterogeneity in two principal dimensions: productiv-
ity, indexed by v, and operational fixed costs, indexed by m. The output of a firm, uniquely
identified by the index pairmv, is defined as Jmv,t. A perfectly competitive firm aggregates
these upstream varieties as:

Jt =

[∫ 1

0

∫
v∈Ωm,t

J
σ−1
σ

mv,t dv dm

] σ
σ−1

,

where Ωm,t denotes the subset of upstream firms sharing the same operational fixed cost
m that decide to produce in period t. Given significant fixed costs, only the firms with
the highest productivity levels may find production viable. The demand for an individual
upstream variety (m, v), is:

Jmv,t =

(
P J
mv,t

P J
t

)−σ

Jt . (5)

Subsequently, the aggregate price index for the upstream product is:

P J
t =


∫ 1

0

∫ 1

v∈Ωm,t

(
P J
mv,t

)1−σ
dv︸ ︷︷ ︸

≡(Pm,t)
1−σ

dm


1

1−σ

=

[∫ 1

0

(
P J
m,t

)1−σ
dm
] 1

1−σ

, (6)

where P J
m,t serves as the aggregate price of input for firms bearing the fixed costs indexed

by m. We further define the nominal expenditure on a given upstream variety as XJ
mv,t =

P J
mv,tJmv,t, and the aggregate expenditure as XJ

t = P J
t Jt, so

XJ
mv,t = ΓJ

t · P 1−σ
mv,t , where: ΓJ

t = XJ
t

(
P J
t

)σ−1
. (7)

Using equation (3), we can express the aggregate input demand of downstream firms as:

Jt =

∫ 1

0

Yt(u) du = Yt

∫ 1

0

(
Pt(u)

Pt

)−γ

du︸ ︷︷ ︸
≡∆t

= Yt∆t , (8)
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where

∆t = (1− θ)

(
P ∗
t

Pt

)−γ

+ θΠγ
t∆t−1 , (9)

represents a measure of price dispersion. Utilizing equation (8), equation (7) can be ex-
pressed as ΓJ

t = (P J
t )

σYt∆t.

2.2.4 Upstream Industry: Monopolistic Competition, Loans, and Entry Decisions

The production function for an arbitrary firm (m, v) features diminishing returns to scale
and is given by

Jmv,t = φmv,t ·Nα
mv,t, with 0 < α ≤ 1 ,

where Nmv,t denotes the labor employed, and φmv,t is a firm-specific productivity assumed
to be drawn from a Pareto distribution, φmv,t

iid∼P
((

κ−1
κ

)
At, κ

)
, with At being the aver-

age aggregate productivity. A higher κ implies that the productivity distribution is more
concentrated around its mean, At. The cumulative distribution function is given by:

Ψ(φmv,t) = 1−

((
κ−1
κ

)
At

φmv,t

)κ

,

with the probability distribution function defined as ψ(φmv,t) ≡ Ψ′(φmv,t).

Profit Function: Firms must pay a pre-determined in-kind fixed cost, Fm,t−1, in the pre-
ceding period (i.e., at t − 1) to operate in each period t. This cost, which covers expenses
such as equipment acquisition, is assumed to be financed through loans financed at the pre-
vailing gross rate, RJ

t−1. The profit for an upstream firm, if it chooses to operate in period
t, is:

ΠJ
mv,t =

(
1 + ζJ

)
P J
mv,tJmv,t︸ ︷︷ ︸

≡rmv,t

−WtNmv,t −RJ
t−1Pt−1Fm,t−1 , (10)

where ζJ is a production subsidy to upstream firms and rmv,t represents their revenue.
These upstream firms operate in a monopolistically competitive market and are not subject
to nominal rigidities, setting prices as a constant markup over marginal costs (if they decide
to produce), formally:

P J
mv,t =

(
(1 + ζJ)−1σ

(σ − 1)α

)
Wtφ

− 1
α

mv,tJ
1−α
α

mv,t . (11)

9



By substituting the derived price equation into equation (10) and using the demand equa-
tions (5) and (7), we can rewrite the profit function as:

ΠJ
mv,t = Ξt · φ

σ−1
α+σ(1−α)

mv,t −RJ
t−1Pt−1Fm,t−1 , (12)

where

Ξt ≡
α + σ(1− α)

(σ − 1)α

(
(1 + ζJ)−1σ

(σ − 1)α

) −σ
α+σ(1−α)

W
α(1−σ)

α+σ(1−α)

t (ΓJ
t )

1
α+σ(1−α) . (13)

Entry Decision: Firms’ entry decision is taken one-period ahead in t − 1, and is based
on their expected profits and associated costs in t. We assume that firms know at t − 1

their forthcoming productivity for period t, φmv,t. However, they remain uninformed about
other eventual shocks that could impact individual demand in t.11 Should a firm decide
to operate, it will subsequently hire labor in t from the spot market, realizing profits as
described in equation (12). Given the productivity draws, we can pinpoint the productivity
threshold, φ∗

m,t, below which a firm would expect zero profit. Firms with the same fixed
cost, Fm,t−1, and their productivity draw below this threshold will opt out of market entry
for period t. Using equation (12), the formal representation of φ∗

m,t is:

Et−1 [ξt · Ξt] ·
(
φ∗
m,t

) σ−1
α+σ(1−α) −RJ

t−1Pt−1Fm,t−1 = 0 , where: ξt =
Qt−1,t

Et−1 [Qt−1,t]
.

(14)
It’s important to note that this threshold, φ∗

m,t, is based on ex-ante expected profits. Once a
firm (m, v) commits to market entry, unforeseen shocks could potentially push profits into
negative figures. Considering the inherent lower limit on productivity,

(
κ−1
κ

)
At, the actual

productivity threshold for entry becomes max
{
φ∗
m,t,
(
κ−1
κ

)
At

}
.12 The proportion of firms

with a fixed cost Fm,t−1 that decide to operate in t is denoted as Mm,t and is given by

Mm,t ≡ Prob
(
φmv,t ≥ φ∗

m,t

)
= min


Et−1 [ξt · Ξt]

[(
κ−1
κ

)
At

] σ−1
α+σ(1−α)

RJ
t−1Pt−1Fm,t−1


κ[α+σ(1−α)]

σ−1

, 1

 ,

(15)

11This contrasts with Burnside et al. (1993), where labor decisions precede the realization of shocks. In
our model, the decision to enter the market precedes the realization of other demand shocks. For simplicity,
we assume that firms possess perfect foresight regarding their next period’s productivity.

12If φ∗
m,t is below

(
κ−1
κ

)
At, then all firms categorized by fixed cost m will operate in t.
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where we use (14) to substitute for φ∗
m,t in the last expression. From this equation, we can

derive the following proposition:

Proposition 1 For upstream firms with a fixed cost of Fm,t−1, Mm,t = 1 when the policy

rate RJ
t−1 is below a threshold RJ,∗

m,t−1 given by

RJ,∗
m,t−1 ≡

Et−1 [ξt · Ξt]
[(

κ−1
κ

)
At

] σ−1
α+σ(1−α)

Pt−1Fm,t−1

. (16)

We refer to this threshold, RJ,∗
m,t−1, as the “satiation bound” (SB) for firms of fixed cost type

m.

As the policy rate, RJ
t−1, falls, more firms with the fixed cost Fm,t−1 opt for market

entry in t due to the reduced loan repayment costs. Upon the policy rate reaching the type-
specific bound RJ,∗

m,t−1, all firms sharing the fixed cost Fm,t−1 (or lower) decide to become
operational in t, leading to a stagnation in market entry for firms of cost type m and below.
This fixed cost type-specific lower bound on the policy rate, RJ,∗

m,t−1, is hence termed the
satiation bound (SB).

In addition to the conventional intertemporal substitution effect captured by the Euler
equation (1), monetary policy wields influence over the market entry decisions of upstream
firms. This, in turn, impacts the input market’s prices and quantities, cascading onto the
aggregate economy via downstream product markets. Upon the rate hitting the SB for firms
with the fixed cost Fm,t−1, no supplementary entries occur, rendering the supply-side effect
of monetary policy ineffectual for such firms.

Loan Demand: From equation (15), we derive the expression for the aggregate real loan
demand of firms with a fixed cost type m:

Lm,t−1

Pt−1

=Mm,t · Fm,t−1 . (17)

Firms opting to operate in period t borrow an amount Lm,t−1 to acquire final goods equiv-
alent to Fm,t−1. This acquisition of final goods connects the entry decisions of firms to the
aggregate demand of the economy via the loan channel.

Fixed Cost Distribution: We assume that the fixed costs of upstream firms, Fm,t, are
drawn from a Pareto distribution, Fm,t

iid∼P
((

ω−1
ω

)
Ft, ω

)
, where Ft represents the average

11



fixed cost associated with running a business, and ω > 1 is the parameter that determines
the variance of the distribution. The associated cumulative distribution function is:

H(Fm,t) = 1−

((
ω−1
ω

)
Ft

Fm,t

)ω

, (18)

and its probability distribution function is denoted by h(Fm,t) ≡ H ′(Fm,t). From Proposi-
tion 1, we obtain the probability measure of fixed cost types Fm,t−1 that are fully satiated,
that is, the share of all firms with fixed cost Fm,t−1 that have already entered the market by
time t, thus resulting in Mm,t = 1. This leads us to the following proposition:

Proposition 2 Given the distribution in equation (18), the probability that Mm,t = 1 is:

Pr
(
RJ

t−1 ≤ RJ,∗
m,t−1

)
= Pr

Fm,t−1 ≤
Et−1 [ξt · Ξt]

[(
κ−1
κ

)
At

] σ−1
α+σ(1−α)

RJ
t−1Pt−1︸ ︷︷ ︸
≡F ∗

t−1

 ≡ H
(
F ∗
t−1

)
,

where F ∗
t−1 is the fixed cost threshold as defined above. All firms with a fixed cost Fm,t−1

less than or equal to F ∗
t−1, irrespective of their productivity values φmv,t, opt to produce in

period t. We term F ∗
t−1 the “full satiation fixed cost threshold”.

Proposition 2 can be interpreted as follows: If a firm’s fixed cost, Fm,t−1, is sufficiently
low —below the threshold F ∗

t−1— then even a firm with the lowest productivity draw would
still deem operations in period t as profitable. Consequently, all firms bearing that fixed
cost, regardless of their respective productivity draws, are active in period t.

Upstream Industry: Aggregation: The price aggregator for operating upstream firms,
denoted by P J

t , can be expressed as:

P J
t

Pt

=

(
Wt

PtAt

)
·
(
Yt∆t

At

) 1−α
α

·

[
Θ3

1 + Θ4 ·H
(
F ∗
t−1

)](α+σ(1−α)
α(σ−1) )

, (19)

where Θ3 = κ[α+σ(1−α)]+(ω−1)(σ−1)
Θ1ω(σ−1)

and Θ4 = κ[α+σ(1−α)]−(σ−1)
ω(σ−1)

are constants. The aggre-
gate measure of firms that operate during period t, represented by Mt, is given by

Mt =

∫ 1

0

∫
v∈Ωm,t

1 dv dm = 1−ΘM ·
[
1−H

(
F ∗
t−1

)]
, (20)
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where ΘM = κ[α+σ(1−α)]
κ[α+σ(1−α)]+ω(σ−1)

. Subsequently, the aggregate loan demand from opera-
tional upstream firms can be derived as:

Lt−1

Pt−1

=
1

Pt−1

∫ 1

0

Lm,t−1 dm = Ft−1 ·
[
1−ΘL ·

[
1−H

(
F ∗
t−1

)](ω−1
ω )
]
, (21)

where ΘL = κ[α+σ(1−α)]
κ[α+σ(1−α)]+(σ−1)(ω−1)

is another model constant.
In equation (20), notice that as the satiation measure H

(
F ∗
t−1

)
increases, the number

of operational firms at time t also increases. From equation (21), the aggregate real loan
demand of firms is proportional to the average fixed cost, Ft−1, and grows with the satiation
rate H

(
F ∗
t−1

)
. Finally, in equation (19), the relative price of inputs from upstream firms

relates to the technology-adjusted real wage, Wt

PtAt
, and the aggregate demand for inputs of

downstream firms, Yt∆t

At
. When participation from upstream firms increases, as indicated by

H(F ∗
t−1), this relative price decreases. This is due to more upstream varieties being avail-

able to downstream firms, leading to greater competition and lower input prices. Therefore,
the entry of new firms can reduce marginal costs for downstream firms and mitigate infla-
tionary pressures.

Average SB: We obtain the average satiation interest rate of the economy by integrating
over equation (16), and denote it by RJ,∗

t−1. This rate serves as a measure of the satiation
propensity of upstream firms. When the prevailing policy rate RJ

t−1 exceeds this average,
a marginal reduction in RJ

t−1 can induce an entry of upstream firms into the market. Ac-
cording to equation (19), this market entry can lower average input prices and subsequently
mitigate inflation. It can also boost aggregate demand and increase the price level, as new
entrants take out loans to meet fixed costs, thus enabling the acquisition of fixed equipment
for the production of final goods.

Proposition 3 The aggregate satiation bound (SB) is expressed as:

RJ,∗
t−1 =

∫ ∞

(ω−1
ω )Ft−1

RJ,∗
m,t−1 dH (Fm,t−1) =

(
ω2

ω2 − 1

)
·
F ∗
t−1

Ft−1

·RJ
t−1 , (22)

where F ∗
t−1 is the threshold fixed cost relative to the average fixed cost Ft−1 in the economy.

If the threshold fixed cost for satiation, F ∗
t−1, surpasses the economy’s average fixed

cost Ft−1, it signals an elevated likelihood of satiation across diverse fixed cost categories.
Consequently, that results in a high value of the average SB rate, RJ,∗

t−1, relative to the

13



policy rate, RJ
t−1. In such a situation, a minor ease in RJ

t−1 may not substantially stimulate
the entry of new upstream firms.

Limit case, ω → ∞: Under our calibration, the fixed cost distribution H(Fm,t) collapses
to its mean value, Ft, thereby becoming degenerate. This results in a uniform fixed cost
across all firms. The economy’s state —whether fully satiated or not— is determined by
the relative sizes of the policy rate RJ

t−1 and the mean satiation bound, RJ,∗
t−1. Specifically,

if RJ
t−1 < RJ,∗

t−1, all upstream firms enter the market and commence production in t. This
simplified version of the model yields analytically tractable equilibrium expressions. Ad-
ditional insights into the equilibrium conditions for this scenario are provided in Appendix
F.

2.3 Shock Processes

The average fixed cost Ft is modeled as follows:

Ft = ϕf · Ȳt · exp(uf,t) = ϕf ·
Y

A
· At · exp(uf,t) , (23)

where uf,t = ρf ·uf,t−1+ εf,t and εf,t is normally distributed with mean 0 and variance σ2
f .

Here, Y
A

is the steady-state output level adjusted for technology, and Ȳt = Y
A
·At represents

the balanced-growth path output.13

For technological progress, the model adopts:

GAt ≡
At+1

At

= (1 + µ) · exp{ua,t} ,

where ua,t = ρa ·ua,t−1+εa,t, and εa,t is normally distributed with mean 0 and variance σ2
a.

Additionally, government expenditure Gt is formulated as:

Gt = ϕg · Yt · exp(ug,t) , (24)

where ug,t = ρg ·ug,t−1+ εg,t, and εg,t is normally distributed with mean 0 and variance σ2
g .

It is assumed that the government maintains fiscal balance, levying a lump-sum tax, i.e.,
Tg,t = Gt on the representative household each period.14

13We assume that Ft scales with balanced-growth-path output Ȳt, not the contemporaneous output Yt. In
practice, this assumption has minimal quantitative impact.

14Considering a zero net supply of government bonds, the government’s budget constraint is upheld.
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2.4 Central Bank

We assume that the central bank follows a Taylor rule for interest rate determination. The
formal representation of this rule is given by:

RB
t = RJ

t = RJ ·
(
Πt

Π̄

)τπ (Yt
Ȳt

)τy

· exp{εr,t} ,

where εr,t is a normally distributed idiosyncratic monetary policy shock with mean 0 and
variance σ2

r . The variable Ȳt denotes the balanced-growth path output level, and Π̄ indicates
the steady-state trend inflation rate. Financial markets are competitive, and the rate that
households face, i.e., RB

t , equals RJ
t in equilibrium, the loan rate faced by upstream firms.

2.5 Aggregation

Here, we aggregate the equations presented in Section 2.2 to obtain the economy-wide
conditions. Consider first the aggregate labor demand Nt, given by

Nt = ΘN ·
(
Yt∆t

At

) 1
α

· (1 + Θ4Ht−1)
−α+σ(1−α)

(σ−1)α , (25)

where Ht−1 ≡ H(F ∗
t−1) for simplicity, and

ΘN =

(
(1 + ζJ)−1σ

(σ − 1)α

)( −σ
α+σ(1−α))(κ− 1

κ

)( σ−1
α+σ(1−α))( κ[α + σ(1− α)]

κ[α + σ(1− α)]− (σ − 1)

)
·
(

ω(σ − 1)

κ[α + σ(1− α)] + (ω − 1)(σ − 1)

)
Θ
( σ
α(σ−1)))

3 > 0 .

(26)
From equation (25), it becomes evident that aggregate labor demand, Nt, is positively cor-
related with the demand for upstream varieties, denoted by Jt. Conversely, the demand for
labor decreases as the satiation measure,Ht−1, rises. An increase inHt−1 results in a higher
aggregate measure of operating firms, Mt, as indicated in equation (20). This increase con-
sequently stimulates employment through new entrants on the extensive margin. However,
this surge in market entry also exerts downward pressure on the relative input price, PJ

t

Pt
,

and dampens the individual labor demand of existing firms, Nmv,t, due to intensified com-
petition. In practice, the latter effect dominates and the reduction in labor demand at the
intensive margin outweighs the increase at the extensive margin induced by new market
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entrants, provided that Jt is held constant.
The real wage, based on the household’s intratemporal optimization condition in equa-

tion (2) and equation (25), is given by

Wt

PtAt

= Θ
1
η

N

(
Ct

At

)(
Yt∆t

At

) 1
ηα

(1 + Θ4Ht−1)
−α+σ(1−α)

η(σ−1)α · exp {−uc,t} . (27)

Substituting equation (27) into equation (19) yields:

P J
t

Pt

= Θ
1
η

NΘ
α+σ(1−α)
(σ−1)α

3

(
Ct

At

)(
Yt∆t

At

)( (1−α)η+1
ηα )

(1 + Θ4Ht−1)
− (1+η)[α+σ(1−α)]

η(σ−1)α · exp {−uc,t} .

(28)

Analysis of equations (25), (27), and (28) confirms that, given fixed aggregate demand
measures such as Ct and Jt, an increase in Ht−1 results in a reduction of both individual
and aggregate labor demand. Consequently, this drives down the equilibrium wage. Hence,
an increase in the entry of upstream firms exerts a deflationary impact on the economy,
signaling a positive shift in aggregate supply.

Market clearing: Market clearing in this economy is given by

Ct +
Lt

Pt

+Gt = Yt , (29)

which, in conjunction with equations (21), (23), and (24), can be reformulated as:

Ct

Yt
= 1− ϕg · exp {ug,t} − ϕf ·

(
Ỹt

Ỹ

)−1

·
[
1−ΘL · [1−Ht]

(ω−1
ω )
]
· exp {uf,t} . (30)

Notice that real loan demand is present on the left-hand side of equation (29). When up-
stream firms opt to operate in the next period, they secure loans from financial institutions
and utilize them to pay for in-kind fixed costs in terms of the final consumption good.
This raises aggregate demand, exerting an inflationary influence in the economy as shown
in equations (27) and (28): in those equations, stronger aggregate demand translates to
inflation.15

15A Keynesian-cross structure becomes evident in equation (29) when endogenous entry of upstream firms
is considered. As Yt expands, the measure of operating upstream firms, Mt, along with their loan demand,
Lt

Pt
, rises, thus generating successive increments in demand.
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Consequently, the entry of upstream firms into the market has the dual effect of shifting
both the aggregate supply and demand curves. Depending on the relative magnitudes of
these shifts, market entry can exhibit either inflationary or deflationary tendencies. Section
4 will elaborate on the economy’s short-run responses to demand and supply shocks within
this framework, underscoring the inherent linkage between the two.

In Guerrieri et al. (2023), a sectoral supply shock —such as the closing of high-contact
sectors due to Covid-19— is more likely to become Keynesian, triggering a more substan-
tial shift in aggregate demand than in supply, especially in multi-sector economies with
incomplete markets. While their focus is primarily on economies where the sector affected
by the supply shock either complements or utilizes inputs from unaffected sectors, our
dual-layered structure (comprising downstream and upstream industries) enables an explo-
ration of the reciprocal impacts between supply and demand. Specifically, in our model, a
supply shock to upstream firms causes shifts in aggregate demand via the labor market and
loan demand. Conversely, a demand shock initiates shifts in the upstream supply curve,
affecting downstream supply primarily through their impact on input prices, and thereby
resulting in successive rounds of demand shifts.

Average SB and satiation: Upon substituting equation (A.24) in Appendix A into (22),
we obtain an expression for the average SB rate:

RJ,∗
t =

(
ω

ω + 1

)
· (1−Ht)

− 1
ω ·RB

t . (31)

This expression allows us to interpret the “policy room”, denoted as RB
t

RJ,∗
t

, as a decreasing
function of the satiation measure Ht.

Corollary 1 re-expresses the policy room RB
t

RJ,∗
t

as a sufficient statistic for the aggregate

participation rate of firms, Mt+1. Importantly, a wider policy room level (i.e., higher RB
t

RJ,∗
t

)
amplifies the impact of monetary easing on the entry of upstream firms.16 This rests on the
following straightforward logic: a relatively high current policy rate RB

t compared to the
average SB, RJ,∗

t , increases the scope for additional firms to enter the market as the policy

16This is consistent with the concave and decreasing function Mt+1 in relation to the policy rate, RB
t , as

seen in (33).
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rate declines.17 Note from equation (31) above that

RB
t

RJ,∗
t

≤ ω + 1

ω
. (32)

Corollary 1 The total measure of upstream firms opting to operate in period t+ 1 is:

Mt+1 = 1−ΘM ·
[(

ω

ω + 1

)
· R

B
t

RJ,∗
t

]ω
, (33)

and a decrease in the policy room RB
t

RJ,∗
t

generates a larger increment in Mt+1 when starting

from a higher initial policy room level.

Proof. Directly from equation (33), we find:

dMt+1

d
(

RB
t

RJ,∗
t

) = −ωΘM

[(
ω

ω + 1

)
· R

B
t

RJ,∗
t

]ω−1

· ω

ω + 1
< 0 ,

whose absolute magnitude is increasing in the level of RB
t

RJ,∗
t

, given ω > 1.

Flexible Price Model: Under flexible prices, the price of consumption varieties produced
by downstream firms exhibits a constant markup over the cost of upstream inputs. Mathe-
matically, this relationship is expressed as:

Pt

P J
t

=
(1 + ζT )−1γ

γ − 1
. (34)

This establishes that the flexible price equilibrium is money-neutral, signifying that the pol-
icy rate RJ exerts no influence on the real allocation of resources. Additional equilibrium
conditions are provided in Appendix A.

2.6 Summary Equilibrium Conditions

For analytical tractability, balanced growth path-adjusted variables are denoted with a tilde,
for example, Ỹt ≡ Yt

At
. In our simulation results, we assume the government implements op-

timal transfers to neutralize real distortions arising from monopolistic competition. Specif-

17This pertains to scenarios where the fixed cost cutoff F ∗
t is low, thus allowing middle-range fixed cost

firms with suboptimal productivity to enter the market.
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ically, this involves setting ζT = 1
γ−1

and ζJ = 1
σ−1

. A comprehensive list of equilibrium
conditions is provided in Appendix B.

3 Steady State Results

3.1 Calibration and Estimation

The calibrated parameters are presented in Table 1. Our model incorporates two key fac-
tors influencing the operation of upstream firms in the market: fixed costs and productiv-
ity. These two variables follow their own independent Pareto distributions. The model is
designed such that the proportion of operating upstream firms is sensitive to parameters
associated with these Pareto distributions. Utilizing the calibrated parameters outlined in
Table 1, our model effectively replicates the moments commonly targeted in the literature.
Key steady-state values are displayed in Table 2.

Fixed Cost to Balanced-Growth-Path Output Ratio, ϕf : In Appendix C.2 and Ap-
pendix C.3 of Appendix C, we estimate (ϕf , ρf , σf ) of equation (23), based on the available
data on the number of establishments in the Quarterly Census of Employment and Wage
(QCEW) database as a proxy for firm participation in the model.18

Our estimated ϕf = 0.5547 yields 91% firm participation rate at the steady state (i.e.,
M = 0.91 in Table 2). It actually matches with the number based on exit and entry rates of
establishments: according to the Business Dynamics Statistics (BDS), the average annual
exit and entry rates from 1977 to 2016 were 10.6% and 12.3%, respectively. Our estimated
value of ϕf = 0.5547 yields a steady-state participation rate M = 0.91, in which the exit
rate is around 10%.19 Note that we do not target this number, as we estimate the entire fixed
cost process (23) with available data.

Shape Parameters in Pareto Distributions, κ and ω: We select κ = ω = 3.4 based
on the work of Ghironi and Melitz (2005), who choose this shape parameter for the pro-
ductivity distribution to align with the standard deviation of log U.S. plant sales, estimated

18Appendix C offers an alternative estimation method based on the total number of employees from CES
National Databases in the Bureau of Labor Statistics (BLS) as well. See Appendix C.1.

19The fixed cost in our model is regarded as a composite of capital and non-capital costs. In the literature,
the capital-to-output cost ratio is approximately estimated to be around 30%. According to Table 5 in Do-
mowitz et al. (1988), the non-capital fixed cost-to-output ratio varies between 0.05 and 0.18 across industries.
If we add up these two components, we see our estimated ϕf = 0.5547 is at the upper end of this range.
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at 1.67 by Bernard et al. (2003). In Appendix A.2, we provide a formula for our model-
implied standard deviation of log revenues of upstream firms and compare with Bernard et
al. (2003).

Elasticity of Substitution, γ and σ: We select γ = 4.3 for the elasticity of substitution
in the downstream market, following Ghironi and Melitz (2005) where 30% mark-up of
price over cost is documented.

We choose σ = 3 based on Jones (2011), who argue that the elasticity of substitution
for upstream market products tend to be lower than in downstream markets. This number
is also close to the number (σ = 3.79) used by Bernard et al. (2003), who calibrate the elas-
ticity of substitution to align with U.S. plant-level and macro trade data. There, the value
of σ = 3.79 is chosen to match the productivity and size advantages of U.S. exporters.20

Our quantitative results turn out to be robust across different levels of σ around 3.

Parameter Description Value Source

β Discount factor 0.998 Dordal-i-Carreras et al. (2016).
η Frisch labor supply elasticity 1 Standard.
γ Elasticity of substitution (of

downstream market)
4.3 From Ghironi and Melitz (2005): 30% mark-up

of price over cost.
σ Elasticity of substitution (of

upstream market)
3 Lower elasticity of upstream market products as

argued in Jones (2011).
α labor share in the upstream

production function
0.6 Standard.

θ Calvo (1983) price stickiness 0.75 Standard.
κ Shape parameter: Pareto dis-

tribution of productivity
3.4 Ghironi and Melitz (2005).

ω Shape parameter: Pareto dis-
tribution of fixed cost

3.4 Keep it the same with the productivity distribu-
tion.

ϕf Fixed cost - steady state out-
put ratio

0.5547 Estimated (Appendix C.3)

ϕg Government spending - out-
put ratio

18% Smets and Wouters (2007) (gy).

20Several studies, including Ghironi and Melitz (2005), Bilbiie et al. (2012), and Fasani et al. (2023), also
adopt the elasticity of substitution around this number, following Bernard et al. (2003).
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τπ Taylor parameter (inflation) 1.5 Standard.
τy Taylor parameter (output) 0.15 Standard.
µ Long-run TFP growth rate 0.005 Match a yearly growth rate at 2%.
Π Long-run inflation 1.02 Long-run inflation target at 2%.

ρa Autoregression for TFP 0.7 0.85 in Schmitt-Grohé and Uribe (2007). Higher
ρa makes our numerical solution unstable.

ρc Autoregression for demand
shock

0.98 The autocorrelation of the preference shock that
affects the marginal utility of consumption esti-
mated by Nakajima (2005).

ρg Autoregression for govern-
ment spending

0.87 Schmitt-Grohé and Uribe (2007).

ρf Autoregression for fixed cost 0.9011 Estimated (Appendix C.3).
σa SD for ϵa 0.0064 Schmitt-Grohé and Uribe (2007).
σc SD for ϵc 0.017 The standard deviation of the preference shock

estimated by Nakajima (2005) using U.S. data
on consumption, labor, and output is 0.017.

σg SD for ϵg 0.016 Schmitt-Grohé and Uribe (2007).
σf SD for ϵf 0.0013 Estimated (Appendix C.3).
σr SD for ϵr 0.0025 25 basis points, following Fed practices.

Table 1: Calibrated parameters.

Variable Value Description
H 0.82 Mass of productivity-irrelevant firms.
M 0.91 Mass of firms operating in the market.
RB 1.012 Gross risk-free rate.
RJ,∗ 1.296 Gross satiation rate.
F̃ ∗ 0.72 Cutoff fixed cost-to-output ratio.
∆ 1.0007 Price dispersion.
Wt

PtAt
0.51 Real wage.

Ct

Yt
0.36 Consumption-to-output ratio.

WtNt

PtYt
0.6 Labor cost-to-output ratio.

Lt/Pt

Ȳt
0.46 Loan-to-output ratio.

Table 2: Steady state values.
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3.2 Comparative Statics

In this section, we conduct comparative statics analyses on the steady-state equilibrium un-
der varying parameter calibrations. This will illustrate the relationship between individual
parameters and the internal mechanics of the model.

Fraction of Operating Upstream Firms: The steady-state proportion of active upstream
firms, denoted as M , is described by 1−ΘM [1−H], as derived from equation (20). Figure
2 visualizes how M responds to shifts in model parameters: κ, ω, ϕf , β, µ, and Π. We
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Figure 2: Comparative Statics: M .

Notes: Benchmark parameters are fixed as listed in Table 1. Ranges for κ, ω, ϕf , β, µ,
and Π are [2.8, 8], [1.01, 8], [0.001, 0.6], [0.9, 0.999], [0.001, 0.025], and [1.001, 1.0709],
respectively. The red dashed line marks the minimum mass of active firms,Mmin = 1−ΘM ,
attained when no firm is satiated, Ht = 0. We partition M into productivity-irrelevant M1

and jointly determined M2 components for various parameter values.

decompose M as follows:

M = Prob(F < F ∗) +((((((((
Prob(F > F ∗)

∫ ∞

F ∗

(
Fm

F ∗

)−κ[α+σ(1−α)]
σ−1 dH(Fm)

������1−H(F ∗)

= H(F ∗)︸ ︷︷ ︸
≡M1

+
ω(σ − 1)

κ[α + σ(1− α)] + ω(σ − 1)
(1−H(F ∗))︸ ︷︷ ︸

≡M2

.

Here, M1 = H(F ∗) represents the mass of firms with sufficiently low fixed costs (Fm,t ≤
F ∗) to remain active irrespective of their productivity. M2 comprises firms that are oper-
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ational but not at the lowest fixed-cost tier; these firms do not operate if they draw a low
productivity level.

The following key points can be drawn from Figure 2: (i) An increase in κ raises both
M1 and M by narrowing the productivity distribution around its mean, thereby raising the
lower bound of productivity and the likelihood of satiation for any given fixed cost; (ii) An
increase in ω manifests via two opposing effects on firm participation, M . On one hand, it
raises the minimum fixed cost ω−1

ω
F , thereby reducing M . On the other hand, it narrows

the fixed-cost distribution around its mean F , potentially reducing the mass of high fixed-
cost firms and increasing M . The total effect on M depends on the relative magnitudes of
these two forces. Moreover, the satiation measure M1 typically declines as ω increases due
to an increased lower bound on fixed costs, ω−1

ω
F , affecting firms that are typically satiated.

These characteristics relating ω and M are further elaborated in Figure D.6 in Appendix
D, which explores the effect of other parameters on the functional relationship between M
and each parameter; (iii) An increment in ϕf shifts the fixed-cost distribution to the right,
thereby reducing both M and M1.

Following from equation (33), it is evident that the policy room RB

RJ,∗ maintains an in-
verse relationship with M . Variations in the parameters will produce effects on the policy
room that are opposite to their impacts on M , as documented in Figure D.7 in Appendix D.

The Real Loan-to-Output Ratio: At the steady state, the following inequality is derived
from equations (21) and (32):

ϕf (1−ΘL) ≤
L/P

Ȳ
= ϕf

[
1−ΘL(1−H(F ∗))

ω−1
ω

]
= ϕf

[
1−ΘL

(
ω

ω + 1

RB

RJ,∗

)ω−1
]
≤ ϕf ,

where the real loan-to-output ratio, L/P

Ȳ
, is a decreasing function of the policy room RB

RJ,∗ ,
but increasing with respect to the satiation measure H(F ∗), and total firm participation,
M .21

Figure 3 describes how L/P

Ȳ
varies with key model parameters: κ, ω, ϕf , β, µ, and Π.

Our observations can be summarized as follows: (i) An increase in κ raises firm participa-
tionM , as illustrated in Figure 2, and narrows the policy room RB

RJ,∗ , as seen in equation (33)
and Figure D.7, resulting on a higher aggregate loan demand; (ii) An increase in ω gives
rise to conflicting outcomes: it initially depresses firm participation M when ω is below

21Note that M increases with H at the steady state as per equation (20).
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a certain threshold, which can be attributed to an increase in the minimum fixed cost of
entry, ω−1

ω
F , as seen in Figure 2. However, this negative extensive margin effect is eventu-

ally counterbalanced by a positive intensive margin effect, where each active firm incurs a
greater fixed cost, hence raising the real loan-to-output ratio; (iii) An increase in ϕf results
in a reduction of firm participation M , evident from Figure 2, thus reducing aggregate loan
demand. As before, this decrease via the extensive margin is eventually neutralized by an
increase via the intensive margin, where each active firm shoulders a higher fixed cost.22

The dynamics between the policy room RB

RJ,∗ and the real loan-to-output ratio L/P

Ȳ
are cap-
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Figure 3: Comparative statistics: Output-scaled real lending.

Notes: The red-dashed lines indicate the upper and lower bounds for output-scaled lending,
corresponding to ϕf and ϕf (1−ΘL), respectively.

tured in Figure 4. An increase in ϕf or ω lowers firm participationM and widens the policy
room, RB

RJ,∗ , with the net effect being an increase of aggregate loan issuance. In contrast, a
rise in κ raises both M and L/P

Ȳ
, inducing a negative correlation with the policy room RB

RJ,∗ .

22The functional relationship between L/P
Ȳ

and other parameters is further explored in Figure D.8.
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Notes: This figure illustrates the co-movements between RB

RJ,∗ and L/P

Ȳ
driven by variations

in κ, ω, and ϕf . The solid triangular marker denotes the steady-state value under benchmark
calibration.

4 Quantitative Analysis

4.1 Supply vs. Demand Shocks

Technology Shock Figure 5 shows how a positive technology shock, ua,t, affects various
variables in our model. Following the shock, a group of previously inactive firms enters the
market, boosting aggregate firm participation Mt, the measure of productivity-insensitive
entrants Ht, and aggregate loans Lt

PtAt
.23 As participating firms pay their fixed costs in units

of the final consumption good, the increase in firm entry contributes to an expansion in
aggregate demand, as detailed in equation (29). An uptick in market participation typi-
cally depresses the real price of inputs, PJ

t

Pt
, due to heightened competition, as expressed in

equation (28). Yet in this case, the rising aggregate demand effect dominates, increasing
real input prices along with labor demand Nt and real wages. This causes inflation Πt and

23In Figures 5 and 6, the percentage increase in the loan-to-output ratio, Lt/Pt

Ȳt
, is equal to Lt

PtAt

A
Y , coming

from a net rise in aggregate loan demand, Lt

PtAt
. For small values of ϕf , changes in loan demand around the

steady state are negligible.
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interest rates RB
t to rise, thereby narrowing the policy room RB

t

RJ,∗
t

.24

We also examine the technology shock’s impact under varying levels of the fixed cost
parameter, ϕf . Higher entry costs mean a greater steady-state prevalence of inactive firms,
1 −M . In such conditions, a positive ua,t shock triggers substantial new firm entry and
larger increases in Mt and Ht. The increase in aggregate demand brought by stronger entry
is further amplified by the elevated fixed costs associated with a higher ϕf . Consequently,
there’s a sharper initial increase in loan demand, real input prices, wages, and labor demand,
followed by a faster reversion to steady-state levels due to increased competition. In this
setting, inflation Πt shows a more moderate response due to larger shifts in firm entry.25

These dynamics align with the traditional AD-AS framework as follows: (i) a positive
technology shock moves the supply curve rightward; (ii) it leads to an outward movement
of the demand curve due to increased loan and labor demands, causing more firm entry and
further shifts in the supply curve; and (iii) when entry costs are high, more inactive firms
enter the market after a positive supply shock. Consequently, both the aggregate supply and
aggregate demand curves shift more extensively rightward, resulting in moderate inflation
and increased output.

Demand Shock Figure 6 illustrates the effects of a consumption demand shock, uc,t. The
figure exhibits impulse responses that are qualitatively analogous to Figure 5. Specifically,
a positive shock to uc,t prompts an increase in firm entry that results in an expansion of the
aggregate supply capacity of the economy.26

In summary, our model highlights the reciprocal relationship between supply and de-
mand that exists as a result of endogenous firm entry. Accordingly, the initial origin of the
shock —be it supply- or demand-driven— yields no qualitative distinctions in the behavior
of the key variables within our model. Nonetheless, economies with a larger pool of po-
tential new entrants generate stronger responses to shocks in the form of larger output and
moderate inflation movements.

24This result is consistent with the positive correlation between the policy room, RB
t

RJ,∗
t

, and firm participa-
tion, Mt, outlined in equation (33)

25This observation is consistent with the findings of Cecioni (2010), who argue that greater firm entry can
mitigate inflationary pressures in the U.S. economy.

26Note one difference between Figures 5 and 6: with our demand shocks, inflation drops due to stronger
effects of additional firm entry on aggregate supply. Also, note that demand shocks are more persistent since
ρc >> ρa in our calibration.
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Figure 5: Impulse response functions to TFP shock.

Notes: The figures display the deviation for 1 standard deviation (0.01) in ua,t which in-
creases the growth rate of the average productivity for upstream firms. The autoregressive
coefficient is 0.6. The gradient blue lines denote the responses under calibration with vary-
ing ϕf . From the light blue to the dark blue, ϕf are 0.35, 0.45, 0.5547 (benchmark), 0.65,
and 0.75. The variables below are plotted in deviations from their steady states: H , M , RB,
Π, and RJ,∗. The rest of the variables are plotted in log deviations from their steady states
(in lower case letters or with a log). ∆ is the price dispersion for the downstream products.
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Figure 6: Impulse response functions to demand shock.

Notes: The figures display the deviation for 1 standard deviation (0.08) in uc,t, the demand
shock. The autoregressive coefficient is 0.6. The gradient blue lines denote the responses
under calibration with varying ϕf . From the light blue to the dark blue, ϕf are 0.35, 0.45,
0.5547 (benchmark), 0.65, and 0.75. The below variables are plotted in deviations in level
from their steady states: H , M , RB, Π, and RJ,∗. The rest of the variables are plotted in
deviations in logs from their steady states (in lower case letters or with a log). ∆ is the
price dispersion for the downstream products.
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Other Shocks In Appendix D.2, impulse response functions are presented for fixed cost
shocks uf,t (Figure D.9), monetary policy shocks εr,t (Figure D.10), and government spend-
ing shocks ug,t (Figure D.11). A positive fixed cost shock induces falls in firm entry Mt

and the satiation measure Ht. This decline is attributed to the elevated productivity cutoff
φ∗
m,t, as specified in equation (14), which rises for each firm type m due to increased entry

costs. This shock has dual, opposing impacts on aggregate demand: First, reduced firm par-
ticipation diminishes fixed equipment demand at the extensive margin, thereby contracting
aggregate demand. Second, the increased fixed costs boost demand from incumbent firms,
thereby augmenting aggregate demand at the intensive margin. Under the model’s bench-
mark calibration (i.e., ϕf = 0.5547), the latter effect prevails, leading to a net expansion in
output. This subsequently results in an increase in equilibrium levels of labor demand, real
wages, and inflation.

A positive monetary policy shock generates an impulse response function akin to that
produced by a consumption demand shock. A rise in monetary policy rates lowers aggre-
gate participation Mt, which in turn decrease loan demand, inflation, real wages, and pro-
duction levels. A positive government spending shock, depicted in Figure D.11, crowds out
consumption via higher real interest rates while simultaneously reducing inflation through
increased participation by upstream firms, as evidenced by rises in both Mt and Ht. The
government spending multiplier is amplified under higher values of ϕf , which is attributable
to stronger firm entry following the shock.

4.2 Intensive vs. Extensive Margin in Labor Adjustment

Note that changes in aggregate labor Nt as specified in equation (25) are attributable to two
primary factors: (i) variations in each operating firm’s labor demand, denoted Nmv,t, over
time —referred to as intensive margin adjustment; and (ii) fluctuations in the number of
active upstream firms Mt across business cycles —known as extensive margin adjustment.
The aggregate labor Nt is formally expressed in equation (35) as:

Nt =

∫ 1

0

∫
v∈Ωm,t

Nmv,t dv dm , (35)

where the individual labor demand Nmv,t derives from equation (A.15). We now proceed
to consider an upstream firm (m, v) operating across two periods t and t+ ι, where ι ≥ 1.
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Utilizing equation (A.15), we define:

gDensity
t,t+ι ≡ Nmv,t+i −Nmv,t

Nmv,t

=

[
1 + Θ4 ·Ht−1

1 + Θ4 ·Ht+ι−1

] σ
(σ−1)α

(
Yt+ι∆t+ι

At+ι

Yt∆t

At

) 1
α

− 1 , (36)

which represents the percentage change between periods t and t + ι in an individual firm
(m, v)’s labor demand Nmv,t, contingent upon the firm’s operation in both periods. Impor-
tantly, gDensity

t,t+ι is solely a function of aggregate variables, independent of the indices (m, v).
We term gDensity

t,t+ι as the “intensive margin” adjustment in labor demand.
From equation (25), we can derive an expression for the percentage change in aggregate

labor, Nt, denoted as gNt,t+ι
27:

gNt,t+ι ≡
Nt+ι −Nt

Nt

= gDensity
t,t+ι + (1 + gDensity

t,t+ι ) · gEntry
t,t+ι , (37)

where gDensity
t,t+ι is defined as in equation (36) and gEntry

t,t+ι is given by

gEntry
t,t+ι =

(Ht+ι−1 −Ht−1) +
ω(σ−1)

κ[α+σ(1−α)]+(ω−1)(σ−1)
(Ht−1 −Ht+ι−1)

Ht−1 +
ω(σ−1)

κ[α+σ(1−α)]+(ω−1)(σ−1)
(1−Ht−1)

. (38)

We interpret gEntry
t,t+ι as the extensive margin adjustment in labor, triggered by changes in firm

entry. According to equation (37), the total percentage change in aggregate labor comprises
both intensive and extensive margin adjustments.
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Figure 7: Decomposition of labor growth rate under different shocks: isolines on intensive
margin.

Notes: Figures illustrate employment growth rate relative to pre-shock employment level.
Gradient green lines indicate intensive margin responses with varying fixed cost parameter
ϕf values. Growth rates are reported in net percentage terms.

27The derivation is provided in Appendix A.
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Figure 8: Decomposition of labor growth rate under different shocks: isolines on extensive
margin.

Notes: Figures illustrate employment growth rate relative to pre-shock employment level.
Gradient blue lines indicate extensive margin responses with varying fixed cost parameter
ϕf values. Growth rates are reported in net percentage terms.

Figures 7 and 8 portray how intensive and extensive margins’ elements respond, respec-
tively, to different shocks. For example, for a positive fixed cost shock uf,t, we note that (i)
a negative extensive margin adjustment due to the exit of less competitive firms, and (ii) an
increase in per-firm labor demand corresponding to higher aggregate output, as evidenced
in Figure D.9.

In contrast, a consumption demand shock ϕc,t generates positive adjustments on both
margins due to increased market entry and aggregate output (see Figure 6). The extensive
margin effect becomes more salient under higher ϕf , while the intensive margin exhibits
a non-monotonic behavior. Initially, individual firms require more workers, but as market
competition intensifies, labor demand flattens, as corroborated by Figure D.9.

4.3 Multipliers and the Policy Room

We now examine the influence of “initial policy room levels” on the responses of aggregate
variables to shocks, commonly termed in the literature as shock multipliers. To obtain the
value of multipliers outside the steady state, we simulate the model over a span of T =

10, 000 periods, selecting 500 unique realizations denoted as Yoriginal. For each selected
realization, we extend the model dynamics up to h = 4 periods ahead based on two different

scenarios: (i) no additional shocks, which results in the time series
{
Yoriginal

t+h

}h=4

h=0
; and, (ii)

an initial one standard deviation addition to the shock of interest, giving rise to the time

series
{
Yshock

t+h

}h=4

h=0
. The multiplier is subsequently computed as

|Yshock
t+h−Yoriginal

t+h |
σ(shock) for horizons

ranging from h = 0 to h = 4.
In Figure 9, we plot the relationship between multipliers and initial policy room levels.
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Figure 9: Scatter plot between policy room and monetary policy multipliers.

Notes: Figures plot the relationship between policy room and monetary policy multipliers
on output (in logs), labor (in logs), and next period mass of operating firms (in levels).
We consider the next period’s mass of operating firms since the firms paying the fixed
cost at t will operate on the market at t + 1. Figures in the first to third rows display the
contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1), and multipliers
after 4 quarters (h = 4) correspondingly. The blue circles represent the result from each
simulation based on solutions from the third-order perturbation method. The red solid lines
are fitted second-order polynomials.
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The key findings are:

1. At h = 0, the multipliers for output and labor positively correlate with initial policy
room levels. This effect is due to the higher rate of firm entry (which in turn raises
equipment purchases) in response to a monetary shock when initial policy room is
larger, consistent with Corollary 1. We will test this channel in the data shortly.

2. At h = 1, although the multipliers decline due to the shock’s lack of persistence,
the positive correlation with the initial policy room remains. This is explained by an
increased number of firms in the market and an associated rise in supply.

3. At h = 4, multipliers approach zero, attributable to the lack of shock persistence.

In summary, the policy room serves as a sufficient statistic for equilibrium firm entry and
is positively correlated with the multipliers for output, labor, and firm entry in response to
monetary shocks. Further details can be found in Figures D.13 and D.1428 in Appendix D,
which relate closely to the discussion here.

5 Empirical Analysis

In this section, we empirically test the key model implication from Corollary 1 and Section
4.3 that a higher initial level of the policy room raises the efficacy of monetary policy, since
there is a larger room for endogenous responses in firm entry, which further affects both
aggregate demand and aggregate supply. In that purpose, in Appendix C.4, we provide two
ways to recover the policy room RB

t

RJ,∗
t

, which is unobservable, from the data on the labor
markets (e.g., the total number of unemployment) and on the measure of firm participation
(e.g., the number of establishements). Here, we focus on the policy room recovered from
the measure of firm participation (i.e., Version 2 in Appendix C.2).29

Our benchmark local projection à la Jordà (2005)

ỹt,t+h =

Q∑
q=1

ỹt−q +
M∑

m=0

β
(h)
0,mϵt−m +

N∑
n=1

β
(h)
R,n

̂rBt−m − rJ∗t−m +

Q∑
p=0

β
(h)
0R,pϵt−p × ̂rBt−p−1 − rJ∗t−p−1 + ut+h|t

is specified by the following components:
28Figure D.14 in Appendix D documents the relation between the policy room and the government spend-

ing multiplier, which is similar to the case of monetary policy in Figure 9.
29We also provide the results based on the measure recovered from labor market variables (i.e., Version 1

in Appendix C.1) in Appendix E.
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1. Monetary policy shocks ϵt: Acosta (2023)’s extended Romer and Romer (2004) mon-
etary policy shocks. In Appendix E, we present results based on Wieland and Yang
(2020)’s extended series of Romer and Romer (2004).

2. Policy room measure ̂rBt − rJ∗t : log-deviation of the policy room RB
t

RJ,∗
t

from the steady
state, recovered by the data on the total number of establishments from the Quarterly
Census of Employment and Wages (QCEW) in Appendices C.2 and C.4.

3. Controls and variables of interest: in our benchmark regression, we control current
and four lags of federal funds rates. We use log consumption, log output, unemploy-
ment rate (%), and log the number of establishments (QCEW) for ỹt.

4. Number of lags: Q =M = N = 4. In Appendix E, we discuss the robustness of our
results across different numbers of lags.

Figure 10 shows our benchmark regression result with monetary shocks from Acosta (2023).
It displays the impulse response functions of output, consumption, and unemployment to
monetary policy shocks and the interaction of monetary policy shocks with the policy room
deviation constructed from the firm entry measure (i.e., Version 2 in Appendix C.2).30

A higher (retrieved) policy room significantly increases the potency of monetary policy
shocks, e.g., for output, one standard deviation increase (2 percentage points) in log-policy
room,31 raises a magnitude of output decrease (in %) in response to a one standard deviation
tightening shock by around 3 percentage points.

Panel (d) emphasize that this differential effect of monetary policy shocks under differ-
ent policy room levels works through endogenous firm entry, i.e., the number of establish-
ments drops more with a tightening monetary shock, under a higher policy room measure.

With Additional Controls We add more controls to our benchmark regression and test
the robustness of our results. The additional controls are current and four lags of federal
funds rates, four lags of oil price growth rate, four lags of long-term interest rate, four lags
of consumption growth rate, four lags of GDP deflator, four lags of shadow federal funds
rate from Wu and Xia (2016). Figure 11 shows no to little difference from Figure 10 where
no additional control is added.

30With our benchmark regression relying on the policy room recovered from the number of establishment
data from QCEW, we use Acosta (2023) monetary policy shock series since the Wieland and Yang (2020)
shock series ends in 2007, thus could not provide us with enough observations for empirical analysis.

31It corresponds 2% increase in the actual policy room measure.
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(a) log(Y), in % with Acosta (2023) (b) log(C), in % with Acosta (2023)

(c) Unemployment rate, in % with Acosta (2023) (d) log(M), in % with Acosta (2023)

Figure 10: Local projection: with policy room from Version 2

Notes: The impulse response functions are based on the benchmark regression, which
controls for current and four lags of federal funds rate. The IRFs are to one positive standard
deviation (29 basis points) in monetary policy shock with one standard deviation increase (2
percentage points) in log policy room constructed based on Version 2 (i.e., Appendix C.2).
The share of operating firms M , which is used to measure the policy room, is measured
by the number of establishments from the Quarterly Census of Employment and Wages
(QCEW) dataset.
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(a) log(Y), in % with Acosta (2023) (b) log(C), in % with Acosta (2023)

(c) Unemployment rate, in % with Acosta (2023) (d) log(M), in % with Acosta (2023)

Figure 11: Local projection: with policy room from Version 2 and additional controls

Notes: The impulse responses functions are for the local projection with the following
additional controls: current and four lags of federal funds rates, four lags of oil price growth
rate, four lags of long-term interest rate, four lags of consumption growth rate, four lags of
GDP deflator, four lags of shadow federal funds rate from Wu and Xia (2016)
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Additional Robustness In Appendix E, we provide the result based on a different method
to recover the policy room ̂rBt − rJ∗t , where we use the employment data, e.g., CES Na-
tional Databases in the Bureau of Labor Statistics (BLS), and monetary policy shocks from
Wieland and Yang (2020). The results are still qualitatively similar to Figure 10.

6 Conclusion

This paper develops a macroeconomic framework to understand the contributions of en-
dogenous firm entry to business cycle fluctuations. Based on a dual-industry (i.e., upstream
and downstream industries) model, we tractably characterize the dynamics of endogenous
firm entry within a New-Keynesian framework. In our model, upstream firms face stochas-
tic fixed entry costs, denominated in the final consumption good. These firms are also con-
strained by cash-in-advance requirements and depend on capital markets for financing their
fixed costs. Downstream firms, on the other hand, are subject to nominal rigidities. Our
analysis reveals that demand shocks increase firm profitability and entry, thereby expanding
the economy’s aggregate supply. In turn, this increased participation stimulates additional
demand for the final good, as firms seek to finance their entry via loans. This process ini-
tiates a self-reinforcing cycle, rendering the relationship between demand and supply non-
separable under general circumstances. As a result, conventionally defined ’supply’ and
’demand’ shocks can induce comparable patterns of business cycle co-movement. Specifi-
cally, supply shifts, resulting from the entry of new firms, lead to disinflationary pressures
alongside an increase in output.

Our research identifies a critical threshold for each entry fixed cost level, termed the
Satiation Bound (SB). At this threshold, all firms with identical entry fixed costs fully
engage in production, rendering monetary policy ineffective in further spurring economic
growth through new firm entry. Based on this concept, we introduce a metric known as
the “policy room”, which represents the difference between the current policy rate and the
average SB across firms. It turns out that there is a strong correlation between the rate of
firm entry, monetary policy efficacy, and our policy room measure.

We further analyze changes in aggregate variables such as labor, breaking them down
into two components: the ‘extensive’ margin, involving new firm entries, and the ‘inten-
sive’ margin, related to activities of incumbent firms. We show that a wider policy room
makes firm entry decisions more responsive to changes in the policy rate, leading to higher
policy multipliers, which we confirm to hold in the data with our empirical exercises. Con-
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versely, when the policy room is narrow, the intensive margin becomes predominant, and
the economy’s response to shocks is characterized by lower output multipliers and height-
ened inflation responses. Therefore, we believe that understanding the drivers of firm entry
is key to figuring out how demand and supply interact at business cycle frequencies.
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Monetary Policy

MARC DORDAL I CARRERAS SEUNG JOO LEE ZHENGHUA QI

A Derivation and Proofs

A.1 Detailed Derivation in Section 2.2

Derivation of equations (12) and (13) The price setting of a firm (m, v) is given by

P J
mv,t =

(
(1 + ζJ)−1σ

(σ − 1)α

)
Wtφ

− 1
α

mv,tJ
1−α
α

mv,t =

(
(1 + ζJ)−1σ

(σ − 1)α

)
Wtφ

− 1
α

mv,t

[
(P J

mv,t)
−σΓJ

t

] 1−α
α ,

in which we can solve for P J
mv,t as

(P J
mv,t)

α+σ(1−α)
α =

(
(1 + ζJ)−1σ

(σ − 1)α

)
Wtφ

− 1
α

mv,t(Γ
J
t )

1−α
α ,

from which we obtain

P J
mv,t =

(
(1 + ζJ)−1σ

(σ − 1)α

) α
α+σ(1−α)

W
α

α+σ(1−α)

t φ
− 1

α+σ(1−α)

mv,t (ΓJ
t )

(1−α)
α+σ(1−α) . (A.1)

To get the revenue function rmv,t, we start from

P J
mv,tJmv,t =

(
(1 + ζJ)−1σ

(σ − 1)α

)
Wtφ

− 1
α

mv,tJ
1
α
mv,t ,

which leads to

rmv,t = (1 + ζJ)P J
mv,tJmv,t =

(
σ

(σ − 1)α

)
WtNmv,t = (1 + ζJ)P J

mv,t

(
P J
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P J
t

)−σ
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(A.2)

= (1 + ζJ)(P J
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1−σΓJ
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1
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Finally, we obtain the formula for the profit ΠJ
mv,t, which is given by

ΠJ
mv,t = rmv,t −WtNmv,t −RJ

t−1Pt−1Fm,t−1 =
α + σ(1− α)

σ
rmv,t −RJ

t−1Pt−1Fm,t−1 .

Calculating P J
m,t in (6): the price aggregator for firms of fixed Fm,t−1 From our no-

tation in (6), we know that among firms with fixed cost Fm,t−1, a set of operating ones at
t would be given by Ωm,t =

{
φmv,t ∈

[
max

{
φ∗
m,t,
(
κ−1
κ

)
At

}
,∞
]}

. The cumulative dis-
tribution function of productivities of upstream firms that decide to produce is Ψ(φm,t)

1−Ψ(φ∗
m,t)

, a
truncated Pareto distribution which is itself a Pareto distribution. With the individual firm
(m, v)’s pricing equation (A.1), we now can compute the aggregate price of upstream firms
with fixed cost Fm,t−1 as:(

P J
m,t

Pt

)1−σ
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��Mm,t ·
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κ )At}
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where we define
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Reexpressing Ξt in equation (13) Combining equation (13) with ΓJ
t = (P J

t )
σYt∆t, we

obtain
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Derivation of P J
t in (19) We start from the full satiation threshold of the fixed cost F ∗

t−1 defined in
Proposition 2:
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where the second equality is from equation (A.5). From (14) and (A.6), we obtain

φ∗
m,t =

(
Fm,t−1

F ∗
t−1

)α+σ(1−α)
σ−1

(
κ− 1

κ

)
At, R

J,∗
m,t−1 =

(
Fm,t−1

F ∗
t−1

)−1

RJ
t−1 . (A.7)

From (15), we obtain
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We rearrange equation (6) as:
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Rearranging equation (A.12), we finally obtain:
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where we define

Θ3 =
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)
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)
.

Derivation of Mt and Lt−1 in (20) and (21)
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To derive equation (17), we start from
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Derivation of Nt in equation (25) Labor Nmv,t employed by a producing upstream firm
(m, v) is given by
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where we use equation (5) in the second equality, equations (8) and (11) for the third
equality, and equation (19) to obtain the fourth one. For convenience we define Ht−1 ≡
H
(
F ∗
t−1

)
. Now we integrate labor in (A.15) across all producing firms to obtain the aggre-

gate labor Nt. First,

Nt =

∫ 1

0

∫
v∈Ωm,t

Nmv,t dv dm

=

(
(1 + ζJ)−1σ

(σ − 1)α

)( −σ
α+σ(1−α))(κ− 1

κ

)( σ−1
α+σ(1−α)) [(κ− 1

κ

)
At

]( 1−σ
α+σ(1−α))

·
[

Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α)(Yt∆t

At

) 1
α
∫ 1

0

∫
v∈Ωm,t

φ
( σ−1
α+σ(1−α))

mv,t dv dm

= □
∫ 1

0

∫
v∈Ωm,t

φ
( σ−1
α+σ(1−α))

mv,t dv dm ,

(A.17)

where

□ =

(
(1 + ζJ)−1σ

(σ − 1)α

)(
−σ

α+σ(1−α)

)(
κ− 1

κ

)(
σ−1

α+σ(1−α)

) [(
κ− 1

κ

)
At

]( 1−σ
α+σ(1−α)

)

·
[

Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α

)(
Yt∆t

At

) 1
α

.

(A.18)

6



Now, (35) leads to
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[(
κ− 1

κ

)
At

]( σ−1
α+σ(1−α)

)(
κ[α+ σ(1− α)]

κ[α+ σ(1− α)]− (σ − 1)

)(
ω(σ − 1)

κ[α+ σ(1− α)] + (ω − 1)(σ − 1)

)
[1 + Θ4Ht−1]

=

(
(1 + ζJ)−1σ

(σ − 1)α

)(
−σ

α+σ(1−α)

)(
κ− 1

κ

)(
σ−1

α+σ(1−α)

)(
κ[α+ σ(1− α)]

κ[α+ σ(1− α)]− (σ − 1)

)

·
(

ω(σ − 1)

κ[α+ σ(1− α)] + (ω − 1)(σ − 1)

)
[1 + Θ4Ht−1]

[
Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α

)(
Yt∆t

At

) 1
α

= ΘN ·
(
Yt∆t

At

) 1
α

· (1 + Θ4Ht−1)
α+σ(1−α)
(1−σ)α ,

where ΘN is defined in (26).

Equilibrium conditions for downstream firms Plugging equation (28) and the expres-
sion for Qt,t+l into (4), we can express the resetting price in (4) in a recursive fashion as

Ot =

(
(1 + ζT )−1γ

γ − 1

)
Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3

(
Yt
At

)(
η+1
ηα

)
∆

(
(1−α)η+1

ηα

)
t (1 + Θ4Ht−1)

(1+η)[α+σ(1−α)]
η(1−σ)α exp {−uc,t}

+ βθEt

[
exp {uc,t+1 − uc,t} ·Πγ

t+1 ·Ot+1

]
,

(A.20)

and

Vt =

(
Ct

Yt

)−1

+ βθ · Et

[
exp {uc,t+1 − uc,t} · Πγ−1

t+1 · Vt+1

]
. (A.21)
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We obtain
P ∗
t

Pt

=
Ot

Vt
. (A.22)

Due to price stickiness à la Calvo (1983), the aggregate price level can be recursively
expressed as:

P 1−γ
t = (1− θ) (P ∗

t )
1−γ + θ (Pt−1)

1−γ ,

or alternatively as:
P ∗
t

Pt

=

(
1− θ

1− θ · Πγ−1
t

) 1
γ−1

. (A.23)

Plugging equation (A.22) into equation (9) and equation (A.23), we obtain

Ot

Vt
=

(
1− θ

1− θ · Πγ−1
t

) 1
γ−1

, ∆t = (1− θ)

(
Ot

Vt

)−γ

+ θΠγ
t∆t−1 .

Equilibrium conditions for households We can write F ∗
t as a function of Ht by using

the cumulative distribution function of fixed costs in (18) and (23):

F ∗
t = [1−Ht]

− 1
ω

(
ω − 1

ω

)
ϕf · Ỹ At · exp {uf,t} . (A.24)

Using the above (A.24), we can rearrange equation (A.6) (i.e., equation about F ∗
t as:

RJ
t = Et

ξt+1 ·

(
P J
t+1

Pt+1

)(
σ

α+σ(1−α)

)(
wt+1

Pt+1At+1

)(
(1−σ)α

α+σ(1−α)

)
1

Ỹ
Πt+1GAt+1

(
Yt+1∆t+1

At+1

)(
1

α+σ(1−α)

)
·

(
Θ2(

ω−1
ω

)
ϕf

)(
κ− 1

κ

)(
(σ−1)(1−α)
α+σ(1−α)

)
[1−Ht]

1
ω · exp {−uf,t} . (A.25)

Plugging (27) and (28) into the above (A.25), we obtain:

RJ
t =

Θ2Θ
1
η

NΘ
σ

(σ−1)α

3(
ω−1
ω

)
ϕf

 ·
(
κ− 1

κ

)( (σ−1)(1−α)
α+σ(1−α) )

(1 + Θ4Ht)
(α+σ(1−α)+ση

η(1−σ)α ) · (1−Ht)
1
ω

(A.26)

· Et

[
ξt+1Πt+1

(
Ct+1

At+1

Yt+1

At+1

)(
Yt+1

At+1

Ỹ

)(
Yt+1∆t+1

At+1

)( η+1
ηα )

·GAt+1 · exp {−(uf,t + uc,t+1)}

]
.
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Finally, we can rearrange the Euler equation in (1), using (30) as follows:

1

RJ
t

= βEt


(

Ct

Yt

)
(

Ct+1

Yt+1

)
G̃Y t+1GAt+1Πt+1

· exp {uc,t+1 − uc,t}

 , (A.27)

where G̃Y t+1 = Yt+1

Yt+1

At

At+1
and GAt+1 = At+1

At
. Combining equation (A.26) and equa-

tion (A.27), we obtain

exp {uf,t + uc,t} = β

Θ2 ·Θ
1
η

N ·Θ
σ

(σ−1)α

3(
ω−1
ω

)
ϕf

(κ− 1

κ

)( (σ−1)(1−α)
α+σ(1−α) )

· (1 + Θ4Ht)
( [α+σ(1−α)]+ση

η(1−σ)α )

· (1−Ht)
1
ω ·

(
Ct

At

Ỹ

)
· Et

[(
Yt+1∆t+1

At+1

)( η+1
ηα )
]
. (A.28)

Flexible price equilibrium Plugging (34) into (19), we obtain

Wt

PtAt
=

(
(1 + ζT )−1γ

γ − 1

)−1

·
(
Yt∆t

At

)α−1
α

·
[

Θ3

1 + Θ4 ·Ht−1

](α+σ(1−α)
1−σ

)
. (A.29)

Plugging (19) and (A.29) into (A.6) (i.e., equation about the cutoff fixed cost F ∗
t ), and based on the

fact that there is no price dispersion under flexible prices, i.e., ∆t = 1, we obtain:

F ∗
t = Θ2 ·

(
(1 + ζT )−1γ

γ − 1

)−1

·
(
κ− 1

κ

)(
(σ−1)(1−α)
α+σ(1−α)

)
·
[

Θ3

1 + Θ4 ·Ht

]
Et

[
ξt+1

(
Πt+1Yt+1

RJ
t

)]
.

(A.30)

By the definition of the distribution function of the fixed costs (see eq. (18)), we express:

[1−Ht]
− 1

ω =
F ∗
t(

ω−1
ω

)
Ft

=
F ∗
t(

ω−1
ω

)
· ϕf · Ỹ At · exp {uf,t}

. (A.31)

Plugging equation (A.31) into equation (A.30), we obtain:

1 =

(
βΘ2(

ω−1
ω

)
· ϕf

)
·
(
(1 + ζT )−1γ

γ − 1

)−1

·
(
κ− 1

κ

)( (σ−1)(1−α)
α+σ(1−α) )

·
[

Θ3

1 + Θ4 ·Ht

]

· [1−Ht]
1
ω · Et

[(
Ỹt

Ỹ

)(
Ct

Yt

Ct+1

Yt+1

)
· exp {uc,t+1 − (uf,t + uc,t)}

]
. (A.32)
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Finally, plugging (34) into (28) and based on no price dispersion under flexible prices, i.e.,
∆t = 1, we obtain

Yt
At

=

(
(1 + ζT )−1γ

γ − 1

)−( ηα
(1−α)η+1)

Θ
−( α

(1−α)η+1)
N Θ

− η[α+σ(1−α)]
[(1−α)η+1](σ−1)

3 ·
(
Ct

At

)−( ηα
(1−α)η+1)

· (1 + Θ4Ht−1)
− (1+η)[α+σ(1−α)])

(1−σ)[(1−α)η+1] · exp
{(

ηα

(1− α)η + 1

)
· uc,t

}
. (A.33)

From (A.32) and (A.33), we can see that the flexible price equilibrium is money-neutral.

A.2 Calibration of (κ, ω) in Section 3.1

Following intutions of Bernard et al. (2003), we calculate the model-implied standard de-
viation of revenues and productivities of operating upstream firms.

Derivations on the cross-sectional standard deviations of sales and productivities We
start from the formula for the revenue rmv,t generated by a firm (m, v) in (A.2):

rmv,t = (1 + ζJ)

(
(1 + ζJ)−1σ

(σ − 1)α

) α(1−σ)
α+σ(1−α)

W
α(1−σ)

α+σ(1−α)

t (ΓJ
t )

1
α+σ(1−α)φ

σ−1
α+σ(1−α)

mv,t , (A.34)

where

φ∗
m,t =

(
RJ

t−1Pt−1Fm,t−1

Et−1 [ξt · Ξt]

)α+σ(1−α)
σ−1

. (A.35)

We can calculate the cross-sectional standard deviation of an individual firm’s revenue and
productivity by calculating the variance:

σ2 (log rmv,t) =

(
σ − 1

α + σ(1− α)

)2

σ2 (logφmv,t)

=

(
σ − 1

α + σ(1− α)

)2

σ2

(
log

φmv,t

φ∗
m,t

+ logφ∗
m,t

)
=

(
σ − 1

α + σ(1− α)

)2 [
σ2

(
log

φmv,t

φ∗
m,t

)
+ σ2

(
logφ∗

m,t

)]
,

(A.36)

where for the second line we use the property that (i) ϕmv,t|ϕmv,t ≥ ϕ∗
m,t follows a Pareto

distribution; (ii) distributions of productivities and fixed costs are independent of each other.
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Therefore,

σ2 (log rmv,t) =

(
σ − 1

α + σ(1− α)

)2
[
σ2

(
log

φmv,t

φ∗
m,t

)
+

(
α + σ(1− α)

σ − 1

)2

σ2 (logFm,t−1)

]

=

(
σ − 1

α + σ(1− α)

)2
[
1

κ2
+

(
α + σ(1− α)

σ − 1

)2
1

ω2

]
,

which implies

σ (log rmv,t) =
σ − 1

α + σ(1− α)

√
1

κ2
+

(
α + σ(1− α)

σ − 1

)2
1

ω2
,

and

σ (logφmv,t) =

√
1

κ2
+

(
α + σ(1− α)

σ − 1

)2
1

ω2
.

Revenue heterogeneity in our model With κ = ω = 3.4, our model predicts the stan-
dard deviation of upstream firms’ revenues to be 0.44. The residual variability in Bernard
et al. (2003) stem from some factors we do not account for, such as taste heterogeneity or
different demand weights for product types. Additionally, their estimates are based on U.S.
manufacturing plants, whereas our framework focuses on upstream firms.

Regarding productivity variability, the standard deviation of log productivity for oper-
ating upstream firms in our model becomes 0.4 when κ = ω = 3.4. According to Bernard
et al. (2003), their model-generated standard deviation of log value-added per worker is
0.35, while the empirical figure stands at 0.75.1 Given the potential for measurement er-
rors, our calibration is closely aligned with their model-generated moment and falls within
a plausible range.

1Bernard et al. (2003) note that some degree of under-prediction could result from measurement errors
in Census data.
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A.3 Detailed Derivation in Section 4.2

Intensive vs. extensive margin labor adjustments: derivation of (37) From (35),
(A.18), and (A.19), we know that the aggregate labor Nt can be written as

Nt =

(
(1 + ζJ)−1σ

(σ − 1)α

)( −σ
α+σ(1−α))(κ− 1

κ

)( σ−1
α+σ(1−α))( κ[α + σ(1− α)]

κ[α + σ(1− α)]− (σ − 1)

)

(A.37)

·
[

Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α)(Yt∆t

At

) 1
α
[
Ht−1 +

ω(σ − 1)

κ[α + σ(1− α)] + (ω − 1)(σ − 1)
(1−Ht−1)

]
= ΘDN

[
Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α)(Yt∆t

At

) 1
α
[
Ht−1 +

ω(σ − 1)

κ[α + σ(1− α)] + (ω − 1)(σ − 1)
(1−Ht−1)

]
︸ ︷︷ ︸

≡SNI
t

= ΘDN

[
Θ3

1 + Θ4 ·Ht−1

]( σ
(σ−1)α)(Yt∆t

At

) 1
α

· SN I
t , (A.38)

where

ΘDN ≡
(
(1 + ζJ)−1σ

(σ − 1)α

)( −σ
α+σ(1−α))(κ− 1

κ

)( σ−1
α+σ(1−α))( κ[α + σ(1− α)]

κ[α + σ(1− α)]− (σ − 1)

)
.

(A.39)
From (A.37), we obtain for ∀ι

Nt+ι −Nt

Nt

=

[
1 + Θ4 ·Ht−1

1 + Θ4 ·Ht+ι−1

]( σ
(σ−1)α)(Yt+ι∆t+ι/At+ι

Yt∆t/At

) 1
α

− 1︸ ︷︷ ︸
=g

Density
t,t+ι

(A.40)

+


1 +

[[
1 + Θ4 ·Ht−1

1 + Θ4 ·Ht+ι−1

]( σ
(σ−1)α)(Yt+ι∆t+ι/At+ι

Yt∆t/At

) 1
α

− 1

]
︸ ︷︷ ︸

=g
Density
t,t+ι


·
SNE

t,t+ι

SN I
t︸ ︷︷ ︸

≡g
Entry
t,t+ι

.

(A.41)
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Therefore, by (36) and the definition of the decomposition in (37), we obtain

gEntry
t,t+ι ≡

SNE
t,t+ι

SN I
t

=

(Ht+ι−1 −Ht−1) +
ω(σ − 1)

κ[α + σ(1− α)] + (ω − 1)(σ − 1)
(Ht−1 −Ht+ι−1)

Ht−1 +
ω(σ − 1)

κ[α + σ(1− α)] + (ω − 1)(σ − 1)
(1−Ht−1)

,

(A.42)

which proves equation (38).
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B Summary of Equilibrium Conditions

B.1 Sticky Price Equilibrium (i.e., Original Model)

exp {uf,t + uc,t} = β

Θ2 ·Θ
1
η

N ·Θ
σ

(σ−1)α

3(
ω−1
ω

)
ϕf

(κ− 1

κ

)( (σ−1)(1−α)
α+σ(1−α) )

· (1 + Θ4Ht)
(α+σ(1−α)+ση

η(1−σ)α )

· (1−Ht)
1
ω ·

(
C̃t

Ỹ

)
· Et

[(
Ỹt+1∆t+1

)( η+1
ηα )

]
1

RJ
t

= βEt

[
C̃t

C̃t+1GAt+1Πt+1

· exp {uc,t+1 − uc,t}

]
C̃t

Ỹt

= 1− ϕg · exp {ug,t} − ϕf ·

(
Ỹt

Ỹ

)−1

·
[
1−ΘL · [1−Ht]

(ω−1
ω )
]
· exp {uf,t}

Ot =

(
(1 + ζT )−1γ

γ − 1

)
Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3 Ỹ
( η+1

ηα )
t ∆

( (1−α)η+1
ηα )

t (1 + Θ4Ht−1)
(1+η)[α+σ(1−α)]

η(1−σ)α exp {−uc,t}

+ βθEt

[
exp {uc,t+1 − uc,t} ·Πγ

t+1 ·Ot+1

]
Vt =

(
C̃t

Ỹt

)−1

+ βθ · Et

[
exp {uc,t+1 − uc,t} ·Πγ−1

t+1 · Vt+1

]
Ot

Vt
=

(
1− θ

1− θ ·Πγ−1
t

) 1
γ−1

∆t = (1− θ)

(
Ot

Vt

)−γ

+ θΠγ
t∆t−1

RJ
t = RJ ·

(
Πt

Π

)τπ
(
Ỹt

Ỹ

)τy

· exp {εr,t} , εr,t ∼ N
(
0, σ2

r

)
F̃ ∗
t ≡ F ∗

t

At
= [1−Ht]

− 1
ω

(
ω − 1

ω

)
ϕf · Ỹ · exp {uf,t}

RJ,∗
t =

(
ω

ω + 1

)
· (1−Ht)

− 1
ω ·RB

t

Nt = ΘN ·
(
Ỹt∆t

) 1
α · (1 + Θ4Ht−1)

α+σ(1−α)
(1−σ)α

gDensity
t,t+1 =

[
1 + Θ4 ·Ht−1

1 + Θ4 ·Ht

]( σ
(σ−1)α )

(
Ỹt+1∆t+1

Ỹt∆t

) 1
α

− 1

gEntry
t,t+1 =

(Ht −Ht−1) +
ω(σ−1)

κ[α+σ(1−α)]+(ω−1)(σ−1) (Ht−1 −Ht)

Ht−1 +
ω(σ−1)

κ[α+σ(1−α)]+(ω−1)(σ−1) (1−Ht−1)

Wt

PtAt
= Θ

1
η

N

(
C̃t

)(
Ỹt∆t

) 1
ηα

(1 + Θ4Ht−1)
α+σ(1−α)
η(1−σ)α · exp {−uc,t}
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P J
t

Pt
= Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3

(
C̃t

)(
Ỹt∆t

)( (1−α)η+1
ηα )

(1 + Θ4Ht−1)
(1+η)[α+σ(1−α)]

η(1−σ)α · exp {−uc,t}

Mt+1 = 1−ΘM · [1−Ht]

Lt/Pt

Ȳt
= ϕf ·

[
1−ΘL · [1−Ht]

(ω−1
ω )
]
· exp {uf,t}

GAt = (1 + µ) · exp {ua,t}

Shock processes:

ua,t = ρa · ua,t−1 + εa,t, εa,t ∼ N
(
0, σ2

a

)
uc,t = ρc · uc,t−1 + εc,t, εc,t ∼ N

(
0, σ2

c

)
ug,t = ρg · ug,t−1 + εg,t, εg,t ∼ N

(
0, σ2

g

)
uf,t = ρf · uf,t−1 + εf,t, εf,t ∼ N

(
0, σ2

f

)
Parameters:

Θ1 =

(
(1 + ζJ)−1σ

(σ − 1)α

) α(1−σ)
α+σ(1−α)

(
κ− 1

κ

) σ−1
α+σ(1−α)

(
κ[α+ σ(1− α)]

κ[α+ σ(1− α)]− (σ − 1)

)

Θ2 =
α+ σ(1− α)

α(σ − 1)

(
(1 + ζJ)−1σ

(σ − 1)α

)− σ
α+σ(1−α)

(
κ− 1

κ

) α(σ−1)
α+σ(1−α)

Θ3 =

(
κ[α+ σ(1− α)] + (ω − 1)(σ − 1)

Θ1ω(σ − 1)

)
Θ4 =

(
κ[α+ σ(1− α)]− (σ − 1)

ω(σ − 1)

)

ΘN =

(
(1 + ζJ)−1σ

(σ − 1)α

)( −σ
α+σ(1−α) )(κ− 1

κ

)( σ−1
α+σ(1−α) )( κ[α+ σ(1− α)]

κ[α+ σ(1− α)]− (σ − 1)

)
·
(

ω(σ − 1)

κ[α+ σ(1− α)] + (ω − 1)(σ − 1)

)
Θ
( σ

α(σ−1)) )
3 > 0

ΘM =
κ[α+ σ(1− α)]

κ[α+ σ(1− α)] + ω(σ − 1)

ΘL =
κ[α+ σ(1− α)]

κ[α+ σ(1− α)] + (σ − 1)(ω − 1)
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B.2 Flexible Price Equilibrium

1 =

(
βΘ2(

ω−1
ω

)
· ϕf

)
·
(
(1 + ζT )−1γ

γ − 1

)−1

·
(
κ− 1

κ

)( (σ−1)(1−α)
α+σ(1−α) )

·
[

Θ3

1 + Θ4 ·Ht

]
[1−Ht]

1
ω

· Et

[(
Ỹt

Ỹ

)(
C̃t/Ỹt

C̃t+1/Ỹt+1

)
· exp {uc,t+1 − (uf,t + uc,t)}

]

Ỹt =

(
(1 + ζT )−1γ

γ − 1

)−( ηα
(1−α)η+1 )

Θ
−( α

(1−α)η+1 )
N Θ

− η[α+σ(1−α)]
[(1−α)η+1](σ−1)

3 · C̃
−( ηα

(1−α)η+1 )
t

· (1 + Θ4Ht−1)
− (1+η)[α+σ(1−α)])

(1−σ)[(1−α)η+1] · exp
{(

ηα

(1− α)η + 1

)
· uc,t

}
C̃t

Ỹt

= 1− ϕg · exp {ug,t} − ϕf ·

(
Ỹt

Ỹ

)−1

·
[
1−ΘL · [1−Ht]

(ω−1
ω )
]
· exp {uf,t}

F̃ ∗
t ≡ F ∗

t

At
= [1−Ht]

− 1
ω

(
ω − 1

ω

)
ϕf · Ỹ · exp {uf,t}

RJ
t = RJ ·

(
Πt

Π

)τπ
(
Ỹt

Ỹ

)τy

· exp {εr,t}

RJ,∗
t =

(
ω

ω + 1

)
· (1−Ht)

− 1
ω ·RB

t

Shock processes:

GAt = (1 + µ) · exp {ua,t}

ua,t = ρa · ua,t−1 + εa,t

uc,t = ρc · uc,t−1 + εc,t

ug,t = ρg · ug,t−1 + εg,t

uf,t = ρf · uf,t−1 + εf,t

εc,t ∼ N
(
0, σ2

c

)
εa,t ∼ N

(
0, σ2

a

)
εg,t ∼ N

(
0, σ2

g

)
εf,t ∼ N

(
0, σ2

f

)
εr,t ∼ N

(
0, σ2

r

)
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B.3 Steady State Conditions

RB = β−1(1 + µ)Π

∆ =

(
1− θ

1− θΠγ

)(
1− θΠγ−1

1− θ

)( γ
γ−1 )

Θ3 · [1−H]
1
ω

1 + Θ4 ·H
=

(
κ− 1

κ

)( (1−σ)(1−α)
α+σ(1−α) ) [ (1 + ζT )−1γ

γ − 1

] [
1− θΠγ

1− θΠγ−1

] [
1− βθΠγ−1

1− βθΠγ

]((ω−1
ω

)
ϕf

β ·Θ2

)

Ỹ =

(
βΘ2Θ

1
η
NΘ

σ
(σ−1)α
3

(ω−1
ω )ϕf

)−( ηα
η+1 ) (

κ−1
κ

)( −ηα(σ−1)(1−α)
[α+σ(1−α)](η+1) ) (1 + Θ4H)

− [α+σ(1−α)]+ση
(η+1)(1−σ) (1−H)−

ηα
ω(η+1)

∆ ·
[
1− ϕg − ϕf ·

[
1−ΘL · [1−H](

ω−1
ω )
]]( ηα

η+1 )

C̃ =
[
1− ϕg − ϕf ·

[
1−ΘL · [1−H](

ω−1
ω )
]]

· Ỹ

M = 1−ΘM · [1−H]

F̃ ∗ = [1−H]
− 1

ω

(
ω − 1

ω

)
ϕf · Ỹ

RJ,∗ =

(
ω

ω + 1

)
· (1−H)−

1
ω · β−1(1 + µ)Π

RJ,∗

RB
=

(
ω

ω + 1

)
· (1−H)−

1
ω

N = ΘN · Ỹ 1
α ·∆ 1

α · (1 + Θ4H)
α+σ(1−α)
(1−σ)α

W

PA
= Θ

1
η

N C̃Ỹ
1

ηα∆
1

ηα (1 + Θ4H)
α+σ(1−α)
η(1−σ)α

P J
t

Pt
= Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3 C̃(Ỹ∆)(
(1−α)η+1

ηα )(1 + Θ4H)
(1+η)[α+σ(1−α)]

η(1−σ)α

O =
(1 + ζT )−1γ

γ − 1
·
Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3 Ỹ ( η+1
ηα )∆

(1−α)η+1
ηα (1 + Θ4H)

(1+η)[α+σ(1−α)]
η(1−σ)α

1− βθΠγ

V =

(
C̃
Ỹ

)−1

1− βθΠγ−1

L/P

Ȳ
= ϕf

[
1−ΘL(1−H)

ω−1
ω

]
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C Estimation of Satiation MeasureHt and the Policy Room

Since the satiation measureHt and the policy room RB
t

RJ,∗
t

are not observable, we provide two
ways to back out those two unobservable measures from the data. If we recover Ht series
from observable data, we can easily recover the policy room measure as well, as these two
are tightly related.

C.1 Version 1: Estimation of Satiation Measure Ht

First, we can divide equation (25) by its steady-state expression to obtain:

Nt

N
=

(
Ỹt

Ỹ
· ∆t

∆

) 1
α

·
(
1 + Θ4Ht−1

1 + Θ4H

)α+σ(1−α)
(1−σ)α

.

Taking logs, we obtain:

n̂t =
1

α

(
ˆ̃yt + ̂log (∆t)

)
+

(
α + σ(1− α)

(1− σ)α

)
̂log (1 + Θ4Ht−1). (C.1)

We now proceed by replacing n̂t, ˆ̃yt and ̂log (∆t) with the HP-filtered empirical estimates
based on data on employment, real GDP, and price dispersion, respectively.2 Once we have
these empirical estimates, we plug them into the following equation (C.2), through which
we obtain an estimate of ̂log (1 + Θ4Ht−1) as:

Estimate
(

̂log (1 + Θ4Ht−1)
)
=

(
(1− σ)α

α + σ(1− α)

)[
n̂t −

1

α

(
ˆ̃yt + ̂log (∆t)

)]
, (C.2)

which leads to

Estimate (Ht−1) =
1

Θ4

·
[
exp

{
Estimate

(
̂log (1 + Θ4Ht−1)

)
+ log (1 + Θ4H)

}
− 1
]
.

For the data on Nt, we use (i) the number of employees, (ii) average weekly hour, (iii)
index of average weekly hour, all from CES National Databases in the Bureau of Labor
Statistics (BLS). Figure C.1 depicts Ht series recovered from this method. We can observe
that Ht is hugely procyclical.

2Notice that we HP-filter the logs of each variable, not their levels.
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(a) HP filter

Figure C.1: The satiation measure Ht: Version 1

Notes: The three series are estimated based on three sources of information on the employ-
ment N . Employee: number of employees. Hour (average): average weekly hour. Hour
(aggregate): aggregate weekly hour, in thousands. All from BLS CES National Databases.

C.2 Version 2: Estimation of Satiation Measure Ht

Instead of relying on the employment data, here we directly use the data on the number of
establishments from the Quarterly Census of Employment and Wages (QCEW), which we
use as a proxy for firm entry Mt+1.3 Dividing equation (15) by its steady-state version, we
obtain:

Mt+1

M
=

1−ΘM · [1−Ht]

1−ΘM · [1−H]

Taking logs on both sides, with mt ≡ logMt:

m̂t+1 = ̂log (1−ΘM · [1−Ht]) (C.3)

so we can back out Ht as:

Ht = − 1

ΘM

· [1−ΘM − exp {m̂t+1 + log (1−ΘM · [1−H])}]

3As seen in Figure C.2, we additionally back out Ht series based on different measures of firm entry: the
number of establishments based on firm entry (exit), found in the Business Employment Dynamics (BED) of
BLS.

19



where m̂t+1 is the HP-filtered data of the log of firm participation. The spikiness of esti-
mated H under Version 2 comes from the spikiness of the number of establishments data.

(a) HP filter

Figure C.2: The satiation measure Ht: Version 2

Notes: The time series are estimated based on three sources of information on the operating
firms M . The green line is based on the number of establishments in the QCEW database.
The purple (blue) line is the number of establishments based on firm entry (exit) informa-
tion in BED. The equation is

Number of establishment =
number of establishments with employment gains (loss)

percentage of establishments with employment gains (loss)
.

Comparison Figure C.3 compares Ht series recovered by Version 1 (based on the num-
ber of employees) and Version 2 (the number of establishments from the QCEW database).
Version 1 generates a more volatileHt series: as our model lacks physical capital, using the
formula for labor demand (i.e., equation (25)) to recover the satiation measure Ht might
overemphasize the role ofHt in driving labor demand fluctuations and lead to more volatile
Ht time series.

In our baseline empirical specification in Section 5, we will use Version 2, based on the
number of establishments from the QCEW database, as a benchmark. We provide results
based on Version 1 (with the total number of employees) measure of Ht series as necessary
robustness checks in Appendix E.
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(a) HP filter

Figure C.3: Satiation Measure Ht: Version 1 vs. Version 2

Notes: TheH time series within each panel are estimated using two different methods. The
green line is based on Version 1 with N measured by the total number of employees. The
blue line is based on Version 2 with M measured by the number of establishments from the
QCEW database.

C.3 Estimation of the Fixed Cost Process: ϕf , ρf , and σf

We start from: (
Lt

PtYt

)(
Ỹt

Ỹ

)
= ϕf ·

[
1−ΘL · (1−Ht)

ω−1
ω

]
· exp

(
uft

)
(C.4)

where the left-hand side is written in the current (private) loan-to-GDP ratio and the output
gap. Taking logs and rearranging, we obtain:

uft = log

(
Lt

PtYt

)
+ ỹt − log(ϕf )− log

[
1−ΘL · (1−Ht)

ω−1
ω

]
(C.5)

Once we have an estimate for Ht series and ϕf , we can back out uft from equation (C.5)
and estimate the AR(1) process parameters ρf and σf as follows:

uf,t = ρf · uf,t−1 + εf,t, εf,t ∼ N
(
0, σ2

f

)
(C.6)

Finally, note that we could estimate ϕf using equation (C.5), equation (C.6) andE [εf,t],
because Ht is a function of H , which is a (nonlinear) function of ϕf .
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Figure C.4 plots the time series of nominal private debt to nominal GDP ratio measured
by debt securities and loans to GDP ratio for nonfinancial corporate business, which we
use as a proxy for Lt

PtYt
.4

Figure C.4: Private Loan-to-output ratio

C.3.1 Detailed Estimation Procedure

Step 1 We construct an initial guess for ϕf around Ht = 1 from equation (C.4), as:

ϕ̂f = Average

{(
Lt

PtYt

)(
Ỹt

Ỹ

)}

Notice that if ỹt is the HP-filtered series of the log-output, Ỹt

Ỹ
is its exponential value.

Step 2 Compute Ht (either from Version 1 or Version 2) using the above guessed ϕ̂f .

Step 3 By combining equations (C.5) and (C.6), we obtain:

ũft = (1− ρf ) · log(ϕf ) + ρf · ũft−1 + εft , (C.7)

where we defined:

ũft = log

(
Lt

PtYt

)
+ ỹt − log

[
1−ΘL · (1−Ht)

ω−1
ω

]
.

4Data: https://fred.stlouisfed.org/graph/?g=VLW.
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We then construct ũft based on available data on loan-to-GDP ratio and filtered GDP
with elicitedHt series5 and then run equation (C.7) as a linear regression, where (1−
ρf ) · log(ϕf ) will be contained in the constant term. This is equivalent to estimating
an AR(1) process.

We obtain an estimate for ρf from regression (C.7), which we use with the constant
term equal to (1− ρf ) · log(ϕf ) to back out a new estimate for ϕf . Finally, we obtain
an estimate for σf as the standard deviation of the residual.

Step 4 Using the new estimate for ϕf , repeat the estimation process from Step 2. We iterate
until the value of estimated ϕf converges.

C.4 Estimation of the Policy Room RB
t

RJ,∗
t

As policy room RB
t

RJ,∗
t

is not observable, we use the estimated Ht series (either from Version

1 or Version 2) in eliciting RB
t

RJ,∗
t

series. Rearranging equation (31), we obtain:

RB
t

RJ,∗
t

=

(
ω + 1

ω

)
· (1−Ht)

1
ω

which we can estimate by plugging in the values of estimated Ht. Dividing the previous
equation by its steady-state value, we obtain:

(
RB

t

RJ,∗
t

)
÷
(
RB

RJ,∗

)
=

(
1−Ht

1−H

) 1
ω

which in log-deviations becomes:

̂rBt − rJ,∗t =
1

ω
· ̂log (1−Ht) (C.8)

which is the expression that we use as a proxy for the policy room in our empirical analysis.
Figure C.5 depicts the policy room series based on Version 1 and Version 2, respectively.
We observe that the policy room tends to spike during the recession where the monetary
policy rate tends to be low and around zero (i.e., zero lower bound).

5Note that in eliciting Ht series, we need the value of H , the steady state level of Ht, which relies on the
guessed value of ϕf .
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(a) Policy room: Version 1 (b) Policy room: Version 2

Figure C.5: Policy room: Version 1 and Version 2

Notes: For Version 1, the three series are estimated based on three sources of information
on the employment N . Employee: number of employees. Hour (average): average weekly
hour. Hour (aggregate): aggregate weekly hour, in thousands. The yellow solid line is
the federal funds rates. For Version 2, the three time series are estimated based on three
sources of information on the operating firms M . The green line is based on the number of
establishments in QECW database. The purple (blue) line is the number of establishments
based on firm entry (exit) information in BED. The yellow line is the federal funds rates.
The equation is

Number of establishment =
number of establishments with employment gains (loss)

percentage of establishments with employment gains (loss)
.
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Notes: This figure displays how variations in other structural parameters affect the relation
between M and the structural parameters.
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Figure D.7: Comparative Statics: Policy Room.

Notes: This figure display how κ, ω, and ϕf affect the relationship between the policy room
and the parameters.
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D.2 Section 4.1
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Figure D.9: Impulse response functions to fixed cost shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.0013) in uf,t,
the fixed cost shock. The autoregressive coefficient is 0.6. The gradient blue lines denote
the responses under calibrations with varying ϕf . From the light blue to the dark blue,
ϕf are 0.35, 0.45, 0.5547 (benchmark), 0.65, and 0.75. The variables below are plotted in
deviations from their steady states: H , M , RB, Π, and RJ,∗ (net interest rate). The rest of
the variables are plotted in log deviations from their steady states (in lower case letters or
with a log). ∆ is the price dispersion for the downstream products. Wt/(PtAt) is the real
wage. P J

t /Pt measures the aggregate price for the upstream products or the input price for
the downstream firms.
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Figure D.10: Impulse response functions to monetary policy shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.0025) in ϵr,t,
the monetary policy shock. The gradient blue lines denote the responses under calibrations
with varying ϕf . From the light blue to the dark blue, ϕf are 0.35, 0.45, 0.5547 (bench-
mark), 0.65, and 0.75. The variables are plotted in deviations from their steady states: H ,
M ,RB, Π, andRJ,∗ (net interest rate). The rest of the variables are plotted in log deviations
from their steady states (in lower case letters or with a log). ∆ is the price dispersion for
the downstream products.Wt/(PtAt) is the real wage. P J

t /Pt measures the aggregate price
for the upstream products or the input price for the downstream firms.
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Figure D.11: Impulse response functions to government spending shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.016) in ug,t
which denotes the government spending shock. The autoregressive coefficient is 0.97. The
gradient blue lines denote the responses under calibration with varying ϕf . From the light
blue to the dark blue, ϕf are 0.35, 0.45, 0.5547 (benchmark), 0.65, and 0.75. The variables
below are plotted in level deviations from their steady states: H , M , RB, Π, and RJ,∗ (net
interest rate). The rest of the variables are plotted in log deviations from their steady states
(in lower case letters or with a log). ∆ is the price dispersion for the downstream products.
Wt/(PtAt) is the real wage. P J

t /Pt measures the aggregate price for the upstream products
or the input price for the downstream firms.
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D.3 Section 4.3
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Figure D.12: Scatter plot between policy room and government spending multipliers.

Notes: Figures plot the relationship between policy room and government spending mul-
tipliers on output (in logs), labor (in logs), and next period mass of operating firms (in
levels). We consider the next period’s mass of operating firms since the firms paying the
fixed cost at twill operate on the market at t+1. Figures in the first to third rows display the
contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1), and multipliers
after 4 quarters (h = 4) correspondingly. The blue circles represent the result from each
simulation based on solutions from the third-order perturbation method. The red solid lines
are fitted second-order polynomials.
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Figure D.13: Scatter plot between the mass of firms and monetary policy multipliers.

Notes: Figures plot the relationship between the current mass of operating firms and mone-
tary policy multipliers on output (in logs), labor (in logs), and next period mass of operating
firms (in levels). We consider the next period’s mass of operating firms since the firms pay-
ing the fixed cost at t will operate on the market at t + 1. Figures in the first to third rows
display the contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1), and
multipliers after 4 quarters (h = 4) correspondingly. The blue circles represent the result
from each simulation based on solutions from the third-order perturbation method. The red
solid lines are fitted second-order polynomials.
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Figure D.14: Scatter plot between the mass of firms and government spending multipliers.

Notes: Figures plot the relationship between the current mass of operating firms and gov-
ernment spending multipliers on output (in logs), labor (in logs), and next period mass of
operating firms (in levels). We consider the next period’s mass of operating firms since the
firms paying the fixed cost at twill operate on the market at t+1. Figures in the first to third
rows display the contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1),
and multipliers after 4 quarters (h = 4) correspondingly. The blue circles represent the
result from each simulation based on solutions from the third-order perturbation method.
The red solid lines are fitted second-order polynomials.
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E Robustness in Section 5

E.1 Robustnes: the Policy Room Recovered by Version 1

Now, we run our benchmark regression

ỹt,t+h =

Q∑
q=1

ỹt−q +
M∑

m=0

β
(h)
0,mϵt−m +

N∑
n=1

β
(h)
R,n

̂rBt−m − rJ∗t−m +

Q∑
p=0

β
(h)
0R,pϵt−p × ̂rBt−p−1 − rJ∗t−p−1 + ut+h|t

based on the policy room measure recovered by Version 1 in Appendix C.1 and Appendix
C.4, based on the total number of employees from CES National Databases in the Bureau of
Labor Statistics (BLS). In this case, we use monetary shock series from either Wieland and
Yang (2020) or Acosta (2023), who both extended the shock series of Romer and Romer
(2004).

Figures E.15 (with Wieland and Yang (2020) monetary policy shock series) and E.16
(with Acosta (2023) shock series) display the impulse response functions of output, con-
sumption, and unemployment to monetary policy shocks and the interaction of monetary
policy shocks with policy room deviation constructed from Version 1 (with the employ-
ment measured by the number of employees from BLS). Overall results are similar, even
if they become less significant with Acosta (2023) and the policy room constructed with
Version 1. As our model lacks physical capital, using the formula for labor demand (i.e.,
equation (25)) to recover the satiation measure Ht and the policy room RB

t

RJ,∗
t

might overem-
phasize the role of the policy room in driving labor demand fluctuations, lowering the
significance of the results.

With Additional Controls We add more controls to our benchmark regression with the
policy room measure recovered from Version 1 and test the robustness of our results. The
controls are current and four lags of federal funds rates, four lags of oil price growth rate,
four lags of long-term interest rate, four lags of consumption growth rate, four lags of GDP
deflator, four lags of shadow federal funds rate from Wu and Xia (2016). Figure E.17
shows no to little difference from Figure E.16 where no additional control is added. The
additional controls are insignificant and do not affect our results.
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(a) log(Y) with Wieland and Yang (2020) (b) log(C) with Wieland and Yang (2020)

(c) Unemployment rate with Wieland and Yang
(2020)

Figure E.15: Local projection: with policy room from Version 1

Notes: The impulse response functions are based on the benchmark regression with mone-
tary policy shocks from Wieland and Yang (2020), which controls for current and four lags
of federal funds rate.
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(a) log(Y), in % with Acosta (2023) (b) log(C), in % with Acosta (2023)

(c) Unemployment rate, in % with Acosta (2023) (d) log(M), in % with Acosta (2023)

Figure E.16: Local projection: with policy room from Version 1

Notes: The impulse response functions are based on the benchmark regression with mone-
tary policy shocks from Acosta (2023), which controls for current and four lags of federal
funds rate.
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(a) log(Y), in % with Acosta (2023) (b) log(C), in % with Acosta (2023)

(c) Unemployment rate, in % with Acosta (2023) (d) log(M), in % with Acosta (2023)

Figure E.17: Local projection: with policy room from Version 1 and additional controls

Notes: The impulse responses functions are for the local projection with the following
additional controls: current and four lags of federal funds rates, four lags of oil price growth
rate, four lags of long-term interest rate, four lags of consumption growth rate, four lags of
GDP deflator, four lags of shadow federal funds rate from Wu and Xia (2016).
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Without Interaction We test the effectiveness of monetary shocks without introducing
the interaction term with the policy room, i.e., β(h)

0R,p = 0. Figures E.19 (with Wieland
and Yang (2020) shocks) and E.18 (with Acosta (2023) shocks) illustrate the impulse re-
sponse functions of log output, log private consumption and the unemployment rate to a
unit of contractionary monetary policy shocks following the method proposed by Romer
and Romer (2004). We observe that monetary policy has mostly significant effects on out-
put, consumption, unemployment rate, and firm entry.

(a) log(Y) - Acosta (2023) (b) log(C) - Acosta (2023)

(c) Unemployment rate - Acosta (2023) (d) log(M) - Acosta (2023)

Figure E.18: Local projection: without interaction

Notes: The impulse response functions are based on the benchmark regression without the
interaction term, with monetary policy shocks from Acosta (2023). Controls for current
and four lags of federal funds rate.
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(a) log(Y) - Wieland and Yang (2020) (b) log(C) - Wieland and Yang (2020)

(c) Unemployment rate - Wieland and Yang
(2020)

(d) log(M) - Wieland and Yang (2020)

Figure E.19: Local projection: without interaction

Notes: The impulse response functions are based on the benchmark regression without the
interaction term, with monetary policy shocks from Wieland and Yang (2020). Controls
for current and four lags of federal funds rate.
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E.2 Robustness: the Number of Lags

We summarize the results with the number of lags different from 4, our benchmark number
in Section 5 and Appendix E.1, as follows:

Change 1 Number of lags being 2 instead of 4

(a) Impulse response functions with shocks of Wieland and Yang (2020) become
smoother with less spiky (also wider and insignificant) confidence bands.

(b) Impulse response functions with shocks of Acosta (2023) are robust when the
number of lags in controls changes from 4 to 2, making the results look slightly
more significant (the initial positive responses of βOR become smaller and in-
significant for output and consumption, thus the later negative responses stand
out more significant for output and consumption. Also, the confidence bands
for unemployment become narrower for Version-1-based policy room.

(c) Impulse response functions with shocks of Acosta (2023) with Version-2-based
policy room (our benchmark result in Section 5) do not change much.

Change 2 Number of lags being 6 instead of 4

(a) Controlling more lags makes the confidence bands of the results with shocks of
Wieland and Yang (2020) narrower.

(b) With the number of lags being 6 and the policy room recovered by Version 1, the
results become worse with shocks of Acosta (2023): initial positive responses
in βOR become more significant and later negative responses are less signifi-
cant for output and consumption, with larger confidence bands for responses in
unemployment.

(c) Impulse response functions with shocks of Acosta (2023) with Version-2-based
policy room (our benchmark result in Section 5) do not change much.6

6The results with too many controls display more spikiness with not-well-behaved confidence intervals
though.
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F Limiting Case with ω → ∞
When ω → +∞, the Pareto distribution H(Fm,t) of the fixed costs collapse to its mean,
Ft. In this scenario, it is trivial to see that P J

m,t = P J
t . For P J

t , we plug equation (A.5) into
equation (A.3), and obtain

P J
t

Pt
=



Θ
−α+σ(1−α)

(σ−1)α

1

(
Wt

PtAt

)
·
(
Yt∆t

At

) 1−α
α

·

 RJ
t−1Ft−1

Θ2Et−1

[
ξt

(
PJ

t

Pt

) σ
α+σ(1−α)

(
Wt

PtAt

)− (σ−1)α
α+σ(1−α) (κ−1

κ At

)
Πt

(
Yt∆t

At

) 1
α+σ(1−α)

]


[κ[α+σ(1−α)]−(σ−1)](α+σ(1−α))

(σ−1)2α

if RJ
t > RJ,∗

t ,

Θ
−(α+σ(1−α)

(σ−1)α )
1

(
Wt

PtAt

)
·
(
Yt∆t

At

) 1−α
α

if RJ
t ≤ RJ,∗

t .

(F.1)

Plugging (F.1) into (A.5), we can obtain

Ξt =



Θ5 ·
(

Wt

PtAt

)[(
κ− 1

κ

)
At

] 1
α+σ(1−α)

· Pt

(
Yt∆t

At

) 1
α

·

 RJ
t−1Ft−1

Θ2Et−1

[
ξt

(
PJ

t

Pt

) σ
α+σ(1−α)

(
Wt

PtAt

)− (σ−1)α
α+σ(1−α) (κ−1

κ At

) (σ−1)(1−α)
α+σ(1−α) Πt(Yt∆t)

1
α+σ(1−α)

]


σ
σ−1 (

κ[α+σ(1−α)]−(σ−1)
(σ−1)α )

if RJ
t > RJ,∗

t ,

Θ5 ·
(

Wt

PtAt

)[(
κ− 1

κ

)
At

] 1
α+σ(1−α)

· Pt

(
Yt∆t

At

) 1
α

if RJ
t ≤ RJ,∗

t ,

(F.2)

where we define

Θ5 = Θ
−( σ

(σ−1)α)
1 Θ2

(
κ− 1

κ

) α(1−σ)−1
α+σ(1−α)

.

Now that Mt = Mm,t, Lt = Lm,t, R
J,∗
t = RJ,∗

m,t and φ∗
t = φ∗

m,t, we can substitute (F.2)
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into (14), (15), (16), and (17) to obtain following analytical expressions:

RJ,∗
t = Θ5 · Et

[
ξt+1

(
κ− 1

κ
At+1

) σ
α+σ(1−α)

(
wt+1

Pt+1At+1

)
Πt+1

Ft

(
Yt+1∆t+1

At+1

) 1
α

]
,

and

φ∗
t =

(
RJ

t

RJ,∗
t

)(α+σ(1−α)
σ−1 ) [(κ− 1

κ

)
At+1

]
, (F.3)

Mt+1 =


(
RJ

t

RJ,∗
t

)−(κ[α+σ(1−α)]
σ−1 )

if RJ
t > RJ,∗

t ,

1 if RJ
t ≤ RJ,∗

t ,

(F.4)

Lt =


(
RJ

t

RJ,∗
t

)−(κ[α+σ(1−α)]
σ−1 )

· Ft if RJ
t > RJ,∗

t ,

Ft if RJ
t ≤ RJ,∗

t .

(F.5)

We observe: if RJ
t ≤ RJ,∗

t , where RJ,∗
t is defined in (22), all firms are satiated and the loan

amount made to firms is equal to Ft, the fixed cost that operating firms need to pay one
period in advance.
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