Diagnostic Expectations in Housing Price Dynamics

Zhenghua QI

MPhil Thesis Defense The Hong Kong University of Science and Technology

July 16, 2021

4日 + 4回 + 4 目 + 4 目 + 目 の 4 で 1

			Appendix 00000000000000
	ſ	Motivation	

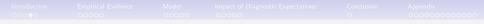
- The Great Recession documented that the housing market could initiate booms and busts that affect the real economy's stability and welfare tremendously.
- Rational expectation cannot generate enough volatilities and other patterns in housing price with identified structural shocks; Structural shocks contribute substantially to housing price volatility. (mpiricalFEVD)
- Professional forecasts and consumer forecasts display predictability, identified overreaction and diagnostic expectations.
- Research Question: how the diagnostic expectations interacting with structural shocks drive the housing price dynamics and aggregate economy?

			Appendix 0000000000000
	_		

This Paper

- Test the predictability of forecast errors in the housing market and find deviation from rational expectation
- Integrate diagnostic expectations into two-agent New Keynesian model with credit constraint and housing market
- Evaluate effect of overreaction on the housing price dynamics, through both aggregate level housing price and housing value distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで 。


		Appendix
		0000000000000

Related Literature

Housing Price Dynamics Determinants

- Credit Conditions
 Stein (1995), Kiyotaki et al. (2011), Favilukis et al. (2017), Cox and Ludvigson (2019) (compare credit and belief's role)
- Investors' Expectations Case et al. (2012), Adelino et al. (2016), Albanesi et al. (2017), De Stefani (2020)

 Diagnostic Expectations and its Applications Gennaioli and Shleifer (2018), Bordalo et al. (2016, 2018, 2020) (nothing before considered on housing market)

Diagnostic Expectations: Overview

- Expectations are biased due to representative heuristics (Kahneman and Tversky, 1972, 1983)
 Overweight future states that become more likely in light of recent information.
- The diagnostic expectation is formalized 😡 with the following form (Bordalo et al., 2018)

$$\omega_t = b\omega_{t-1} + \epsilon_t \tag{1}$$

<ロト < 個ト < 注ト < 注ト 注目 の Q (P 5)</p>

$$\mathbb{E}_t^{\theta}(\omega_{t+1}) = \mathbb{E}_t(\omega_{t+1}) + \theta[\mathbb{E}_t(\omega_{t+1}) - \mathbb{E}_{t-1}(\omega_{t+1})]$$
(2)

		Appendix
		0000000000000

Roadmap

Empirical Evidence

- Predictability of Forecast on Forecast Errors
- Predictability of Forecast Revisions on Forecast Errors
- The Full Two-Agent New Keynesian Model
- Impact of Diagnostic Expectations
 - Housing price growth rate and housing value distribution

4日 × 4日 × 4 三 × 4 三 × 1 三 · 9 4 0 6

- Impulse response functions
- Conclusion

Predictability: Deviation from Full Information Rational Expectation

Following Coibion and Gorodnichenko (2015), Full information rational expectation indicates $\beta_a = 0$. Results are presented for both the whole sample and different income groups.

$$FE_{t,t+12}(\Delta HP_{t+12}) \equiv \Delta HP_{t+12} - F_{t,t+12} = c_1 + \beta_a F_{t,t+12} + \Phi_t + e_t$$
(3)

- Data Summary:
 - $F_{t,t+12}$: Housing price growth expectations Survey of Consumer Expectations (SCE) by the Federal Reserve Bank of New York, monthly, 2013M6 - 2021M5.
 - ΔHP_{t+12}: Realized housing price growth Freddie Mac housing price index
 - Φ: Controls

Predictability: Deviation from Full Information Rational Expectation

Forecast Error	Median	IC1	IC2	IC3
	(1)	(2)	(3)	(4)
None				
	-2.86***	-2.10^{***}	-2.60***	-2.10***
$F_{t,t+12}$	(0.48)	(0.42)	(0.54)	(0.53)
Adjusted R^2	0.43	0.36	0.45	0.51
Φ ₁				
	-2.43***	-1.17^{***}	-1.76^{***}	-1.44***
$F_{t,t+12}$	(0.57)	(0.41)	(0.32)	(0.24)
Adjusted R ²	0.50	0.48	0.51	0.56
Φ ₂				
	-2.97***	-1.52^{***}	-1.82^{***}	-1.42***
$F_{t,t+12}$	(0.53)	(0.37)	(0.34)	(0.25)
Adjusted R ²	0.57	0.55	0.50	0.56
Obs	82	82	82	82

Table 1: Forecast errors on forecasts, with and without expectation controls once a

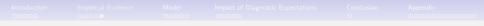
Predictability: Deviation from Full Information

Following Coibion and Gorodnichenko (2015), rational expectation with information rigidity indicates theoretical $\beta_b > 0$.

Forecast Revision \propto Expectation Adjustment

Forecast Error \propto Expectation Adjustment + Shock

$$\Delta HP_{t+h} - F_{t;t,t+h} = c + \beta_b(F_{t;t,t+h} - F_{t-1;t,t+h}) + e_t$$
(4)


• Data Summary:

*F*_{t;t,t+h} - *F*_{t-1;t,t+h}: Forecast revision Time t and t - 1 forecast for the housing price growth rate from t to t + h, monthly and quarterly data constructed from Freddie Mac forecast reports, 2014Q1 - 2021Q1.

Predictability: Deviation from Full Information

Forecast Revision	h=1	h=2	h=3
	(1)	(2)	(3)
	-0.97	-0.10	-0.15
$F_{t;t,t+h} - F_{t-1;t,t+h}$	(0.70)	(0.10)	(0.45)
Adjusted R ²	0.13	-0.03	-0.03
Obs	37	36	35

Table 2: Forecast error on forecast revision

Empirical Evidence: Summary

Effect of irrational expectation Significantly negative β̂_a; Insignificant β̂_b.

• Same results among income groups motivate two-agent framework

No significant differences of $\hat{\beta}_a$ across income groups; Match the empirical finding that prime borrowers and investors take the responsibility.

• Diagnostic expectation as an explanation Incorporate diagnostic expectation into a New Keynesian model

(ロト (個) (目) (目) (目) (の)() 11

		Appendix 00000000000000

Model: Belief

 Naivete (O'Donoghue and Rabin, 1999) Belief: diagnostic expectation E^θ[...] Behave: rational expectation Policy(E^θ[...])

The approach to characterize the equilibrium system under **naivete**, (Bianchi et al. , 2021)

- Step 1. Construct the system under RE as shadow system
- *Step 2*. Construct the system under DE by substituting RE with its DE counterparts and solve the optimal policy rule

$$\mathbb{E}_t^{\theta}(\omega_{t+1}) = \mathbb{E}_t(\omega_{t+1}) + \theta[\mathbb{E}_t(\omega_{t+1}) - \mathbb{E}_{t-1}(\omega_{t+1})]$$
(5)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ① ○ ○ 12

Two version of reference point:

- *DE*1 Short-memory: $E_{t-1}(\omega_{t+1})$
- DE11 Three-year memory: $\sum_{j=1}^{J} \vartheta_j \mathbb{E}_{t-j}(\omega_{t+1}), J = 11$

Model: Summary

- Households: investor and saver
- Monopolistically competitive firms with Calvo's sticky price, produce normal consumption goods and use industrial housing as input

$$Y_{jt} = A_t K_{j,t-1}^{\alpha} (1 - \phi_{t-1}) H_{j,t-1}^{\kappa} N_{j,t}^{1 - \alpha - \kappa}$$
(6)

- Constant housing supply
- Monetary authority: 2 versions of Taylor Rule
 - Taylor rule 1:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{a_1} \left[\left(\frac{\pi_t}{\pi}\right)^{a_2}\right]^{1-a_1} e^{\nu_t}$$
(7)

<□> < @ > < E > < E > E のQ @ 13

• Taylor Rule 2

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{a_1} \left[\left(\frac{\mathbb{E}_t^{\theta}(\pi_{t+1})}{\pi}\right)^{a_2} X_t^{a_3}\right]^{1-a_1} e^{\nu_t} \tag{8}$$

		Appendix
		0000000000000

Model: Households

$$\max_{C_{it},N_{it},K_{it},H_{it},\phi_{it},b_{t}} \mathbb{E}_{0}^{\theta} \sum_{t=0}^{\infty} \beta_{i}^{t} [InC_{it} + Jln(\phi_{it}H_{it}) - \chi \frac{N_{it}^{1+\eta}}{1+\eta}]$$

i = 1 for saver and i = 2 for investor, subject to the budget constraint:

s.t.
$$C_{it} + K_{it} + q_t (H_{it} - H_{i,t-1}) + (\mathbb{I}_1 - \mathbb{I}_2) b_t + \frac{\varphi_k}{2} (\frac{I_{it}}{K_{i,t-1}} - \delta)^2 K_{i,t-1}$$

$$= r_{i,k,t} K_{i,t-1} + r_{i,h,t} (1 - \phi_{i,t-1}) H_{i,t-1} + w_{it} N_{it} + (1 - \delta) K_{i,t-1} + \Pi_t$$

$$+ (\mathbb{I}_1 - \mathbb{I}_2) \frac{R_{t-1}}{1 + \pi_t} b_{t-1}$$
(9)

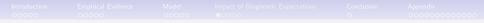
The investors as the borrowers are restricted by the credit constraint:

$$b_t \le m_t \mathbb{E}_t^{\theta}(q_{t+1} \frac{H_{2t}}{R_t}) \tag{10}$$

TFP shock, liquidity shock, and monetary policy shock follow AR(1) processes separately. (2 + 2) + (2 +

Model: Calibration

Description	Parameter	Value
Discount factor for saver	β_1	0.99
Discount factor for investor	β_2	0.98
Weight on housing preference	J	0.075
Industrial housing share in production	κ	0.03
Diagnostic expectation	heta	1


Table 3: Calibrated Parameter Values

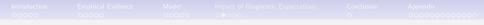
Model: Estimation

• The parameters related to shocks and capital adjustment cost are estimated using method of moment with variance-covariance matrix of (Y, C, I, N, q).

Shock	Value(%)	IRF
Empirical Identified Shocks		
TFP shock σ_a	0.8	5 to 10%
Monetary policy shock σ_v	0.14	-5 to $-10%$
Taylor Rule 1		
TFP shock σ_a	0.85	3 %
Monetary policy shock σ_v	0.13	-3%
Taylor Rule 2		
TFP shock σ_a	0.81	3.5 %
Monetary policy shock σ_v	0.14	-3.5%

Table 4: Shocks Comparison

Housing Demand Decomposition


- Substitution Effect: relative price
- Income Effect : budget constraint

$$JH_{i,t}^{-1} + \beta_{i}\mathbb{E}_{t}^{\theta}[C_{i,t+1}^{-1}(r_{i,h,t+1}(1-\phi_{i,t})+q_{t+1})] + \mathbb{I}_{2}m_{t}\psi_{t}\mathbb{E}_{t}^{\theta}q_{t+1} = C_{i,t}^{-1}q_{t}$$
(11)
$$J\phi_{it}^{-1} = \beta_{i}\mathbb{E}_{t}^{\theta}[C_{i,t+1}^{-1}r_{i,h,t+1}H_{it}]$$
(12)

DE makes the housing demand more volatile relative to RE

<□> <@> < E> < E> E のQ · 17

• DE amplifies the income effect through overreaction in expectations

Comparison: Unconditional Variance

• Housing price growth rate volatility $var(\Delta q)$

Variance	Empirical	RE	DE1	DE11
Taylor Rule 1	30.24	3.18	7.38	6.79
Taylor Rule 2	30.24	6.16	14.55	13.48

Table 5: Variance Comparison, Annualized Percentage

Impulse Response Functions: Empirical

 Significant response of real housing price growth rate to TFP shock (+) and monetary policy shock (-).

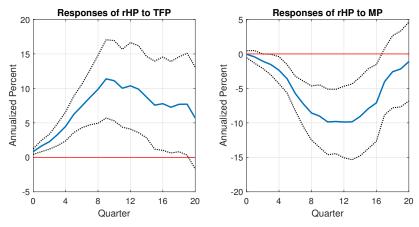
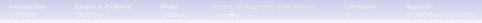



Figure 1: Local projection, Real Housing Price, 1 s.t.d Shock, 90% CI

<ロト < 母ト < 王ト < 王ト 王 のへで 19

Impulse Response Functions: Empirical

 Significant response of residential housing value share to TFP shock (+) and monetary policy shock (-).

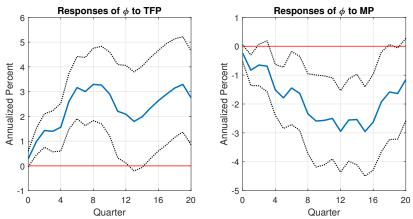



Figure 2: Local projection, Residential Housing Value Share, 1 s.t.d Shock, 90% CI ・ロト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で 20

Impulse Response Functions: Model Simulated

• Housing price growth rate \hat{q}_t & Housing value share $\hat{\phi}_t$

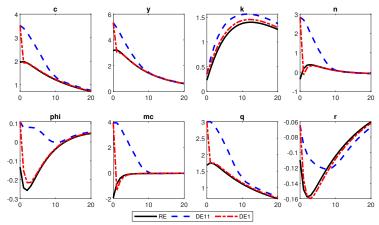


Figure 3: Impulse Response Functions, 1 s.t.d TFP shock, Taylor Rule 1

Conclusion & Future Directions

Conclusion

- Predictability of forecast errors in the housing market
- Representative heuristic leads to more persistence and significant responses in housing price to TFP shocks
- Overestimation, especially from investors, leads to an overreaction in consumption, investment, housing demand, and can resolve the pro-cyclical residential housing value share.

<□ > < @ > < E > < E > E - のQ @ 22

Future Directions

- Connection of data to model
- Solution method for limited DE
- Policy implication

Formula

• Probability density function under DE

$$h_t^{\theta}(\hat{\omega_{t+1}}) = h(\hat{\omega_{t+1}}|\omega_t = \hat{\omega_t}) \left[\frac{h(\hat{\omega_{t+1}}|\omega_t = \hat{\omega_t})}{h(\hat{\omega_{t+1}}|\omega_t = b\hat{\omega_{t-1}})} \right]^{\theta} \frac{1}{Z}$$
(13)

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 23

Back

		Appendix
		0000000000000000

Empirical FEVDs

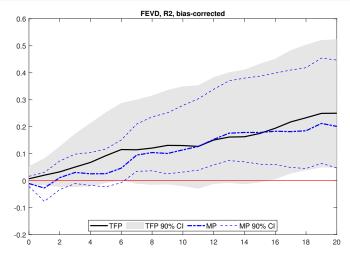
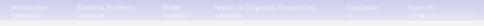



Figure 4: Empirical Forecast Error Variance Decomposition, Real Housing Price

Test 1 on Different Income Groups

 $FE_{i,t,t+12} = c_2 + \alpha_{i,1} \mathbb{D}_i + \beta_{i,2} F_{i,t} + \alpha_{i,2} \mathbb{D}_i \times F_{i,t} + \alpha_{i,3} controls_{i,t} + \alpha_{i,4} controls_t + e_{i,t}$ (14)

Forecast Error	Forecast Error $i = 1$		<i>i</i> = 3
	(1)	(2)	(3)
D × E	-0.5878	-0.3528	-0.2389
$\mathbb{D}_i imes F_{i,t}$	(0.6152)	(0.7652)	(0.6811)
Obs	164	164	164

Table 6: Tests of the degree of predictability among income groups

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

		Appendix
		000000000000000000000000000000000000000

Model: A Toy Model

- Housing consumers: *C*
- Housing investors: $K\delta_{p,t}$, $\delta_{p,t} = Prob(p_{t+1} > p_t)$.
- Fundamental Housing Price: $p_{t+1} = \rho p_t + \epsilon_{t+1}$
- Expected Housing Price: $\mathbb{E}_t^{\theta}(p_{t+1}) = \rho p_t + \theta \rho \epsilon_t$
- Realized Housing Price: $p_{t+1} = \rho^2 p_t + (\rho + \theta \rho) \epsilon_{t+1}$
- Revealed predictability:

$$\hat{\beta}_{a} \equiv \frac{Cov[p_{t+1} - \mathbb{E}_{t}^{\theta}(p_{t+1})]}{var[\mathbb{E}_{t}^{\theta}(p_{t+1})]} = -\frac{\theta^{2}\rho^{2}\sigma^{2}}{\frac{\rho^{2}}{1-\rho^{2}}\sigma^{2} + \theta^{2}\rho^{2}\sigma^{2}} < 0$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 26

		Appendix
		000000000000000

Model: Estimation

Description	Parameter	Taylor Rule 1	Taylor Rule 2
Autocorrelation of $logA_t$	$ ho_{a}$	0.8797	0.9312
Autocorrelation of $logm_t$	$ ho_m$	0.8483	0.9893
Autocorrelation of $log u_t$	ρ_{v}	0.6427	0.5213
std of $logA_t$	σ_{a}	0.0085	0.0081
std of <i>logm</i> t	σ_m	0.0476	0.0574
std of $log \nu_t$	σ_{v}	0.0013	0.0014
capital adjustment cost	φ	5.2468	5.5275

Table 7: Estimated Parameter Values

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 27

IRFs to TFP Shock, Taylor Rule 1, Separate

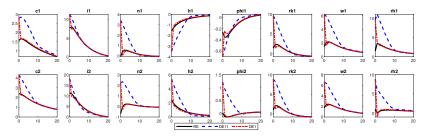


Figure 5: Separate Impulse Response Functions, 1 s.t.d TFP shock, Taylor Rule 1 $\,$

Back

(ロト (日) (三) (三) (三) (28)

IRFs to TFP Shock, Taylor Rule 2

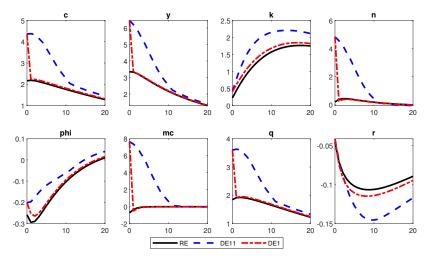


Figure 6: Impulse Response Functions, 1 s.t.d TFP shock, Taylor Rule 2

IRFs to TFP Shock, Taylor Rule 2, Separate

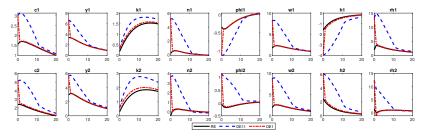


Figure 7: Separate Impulse Response Functions, 1 s.t.d TFP shock, Taylor Rule 2

Back

IRFs to Monetary Policy Shock, Taylor rule 1

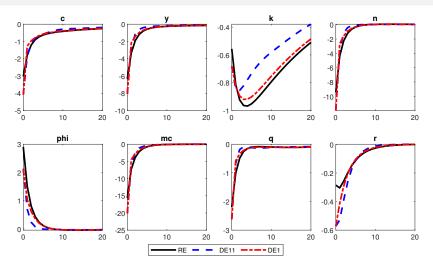


Figure 8: Impulse Response Functions, 1 s.t.d Monetary Policy Shock, Taylor Rule 1

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 31

IRFs to Monetary Policy Shock, Taylor rule 2

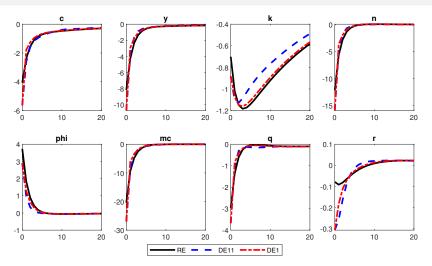
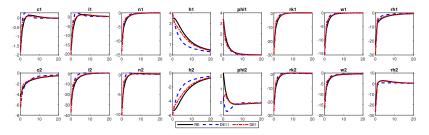



Figure 9: Impulse Response Functions, 1 s.t.d Monetary Policy Shock, Taylor Rule 2

IRFs to Monetary Policy Shock, Taylor rule 1, Separate

・ロト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で 33

IRFs to Monetary Policy Shock, Taylor rule 2, Separate

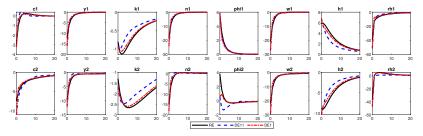


Figure 11: Separate Impulse Response Functions, 1 s.t.d TFP shock, Taylor Rule 2 $% \left({{{\rm{T}}_{\rm{T}}}} \right)$

Back

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ E の Q @ 34

IRF: Representative NK with Adjustment Cost

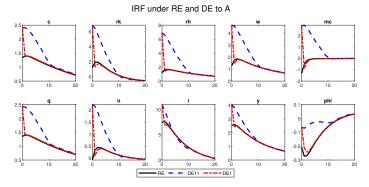


Figure 12: Impulse Response Functions, 1 s.t.d TFP shock, standard NK model